Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant J ; 117(4): 1130-1147, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37967025

RESUMEN

Flowering is an indicator of plant transformation from vegetative to reproductive growth. miR160 has been shown to have a significant effect on the growth and development of fruits, leaves, and roots of plants or their stress response to environment, but the participation of miR160 in regulating flowering time in plants is unclear. In this study, we found that two FvemiR160s (FvemiR160a/FvemiR160b) mature sequences in strawberry (Fragaria vesca) were consistent. It was displayed that the miR160 mature sequence is highly conserved in various species, and the miR160 mature sequence formed by the 5' arm of the MIR160 precursor was more conserved. Three FveARFs in woodland strawberry were negatively regulated by FvemiR160a, among which FveARF18A was the most significant. Phylogenetic analysis indicated that FvemiR160 is closely related to apple (Malus domestica), grape (Vitis vinifera), and Arabidopsis thaliana, while FveARF18A is closely related to RcARF18. Subsequently, we demonstrated that FvemiR160a can target cutting FveARF18A to negatively regulate its expression by RLM-5' RACE, cleavage site mutation, and GFP fluorescence assay. Moreover, we observed that FveMIR160a overexpressed plants have advanced flowering, while mFveARF18A overexpressed plants have delayed flowering. We also verified that FveARF18A negatively regulates the expression of FveAP1 and FveFUL by binding their promoters by yeast one-hybrid, LUC, and GUS assay, and FveAP1 and FveFUL transgenic Arabidopsis showed early flowering phenotype. In addition, the expression level of FvemiR160a was decreased obviously while that of FveARF18A was increased obviously by MeJA, GA and IAA. In conclusion, our study reveals the important role of the FvemiR160-FveARF18A-FveAP1/FveFUL module in the flowering process of woodland strawberry and provides a new pathway for studying flowering.


Asunto(s)
Fragaria , Fragaria/genética , Fragaria/metabolismo , Filogenia , Hojas de la Planta/genética , Fenotipo , Regiones Promotoras Genéticas , Regulación de la Expresión Génica de las Plantas/genética
2.
Plant Cell Rep ; 41(4): 921-934, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34985575

RESUMEN

KEY MESSAGE: miR390-tasiRNA3-ARF4 pathway was identified in woodland strawberry. FvemiR390 was involved in the regulation of flowering time, and miR390-tasiRNA3-ARF4 regulated flowering time through FveAP1/FveFUL in woodland strawberry. miRNA is an important type of regulator, and widely involved in plant growth, development and stress response. As a conserved miRNA family, the function of miR390 has been studied in many species, but poorly understood in woodland strawberry. In this study, we found that the members of miR390 family were highly conservative, and FvemiR390a and FvemiR390b have the same mature sequence. Therefore, we chose FveMIR390a to generate FvemiR390 mature sequence for functional studies. Subsequently, the result of transient gene expression assay proved that FvemiR390 negatively regulates FveARF4 through miR390-tasiRNA3-ARF4 pathway. Using transgenic plants, we discovered that the overexpression of FveMIR390a delayed flowering in woodland strawberry. Further studies revealed that the expressions of FveAP1 and FveFUL were lower in transgenic plants, which indicates miR390-tasiRNA3-ARF4 pathway delays flowering time through the FveAP1/FveFUL in woodland strawberry. Moreover, the expression of FvemiR390 responded to exogenous hormones, which also provides a reference for the application of exogenous hormones in regulating the flowering time of woodland strawberry.


Asunto(s)
Fragaria , MicroARNs , Fragaria/genética , Fragaria/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Hormonas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Plantas Modificadas Genéticamente/genética
3.
Phys Chem Chem Phys ; 23(11): 6583-6590, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33704338

RESUMEN

Hybrid organic-inorganic perovskite materials, such as CH3NH3PbI3, exhibit substantial potential in a variety of optoelectronic applications. Nevertheless, the interplay between the photoinduced excitations and iodine Frenkel defects which are abundant in CH3NH3PbI3 films remains poorly understood. Here we study the light-triggered electronic and excitonic properties in the presence of iodine Frenkel defects in CH3NH3PbI3 by using a combination of density functional theory (DFT) and time-dependent DFT approaches, the latter of which treats electron-hole and electron-nucleus interactions on the same footing. For isolated Frenkel defects, electrons are trapped close to the iodine vacancies and the electron-hole correlation brings the holes in close vicinity to the electrons, yielding tightly bound polaronic excitons. However, in the presence of multiple interactive Frenkel defects, the holes are pulled out from an electron-hole Coulomb well by the iodine interstitials, leading to spatially separated electron-hole pairs. The X-ray photoelectron spectra are then simulated, unravelling the light-triggered charge transfer induced by Frenkel defects at the atomistic level. We also find that the energy and spatial distributions of polaronic excitons at the Frenkel defects can be controlled by the dynamical rotation of organic cations.

4.
Neurochem Int ; 155: 105324, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247479

RESUMEN

Induced pluripotent stem cells (iPSCs) are a promising unlimited source for cell replacement therapy of neurodegenerative disorders, including Parkinson's disease (PD). In the present study, rat iPSCs-derived primitive neuroepithelial cells (RiPSCs-iNECs) were successfully induced from rat iPSCs (RiPSCs) following two major developmental stages, and could generate neurospheres and differentiated into both neurons and astrocytes in vitro. Then, the RiPSCs-iNECs-GFP+ were unilaterally transplanted into the right substantia nigra (SN) of 6-hydroxydopamine-lesioned rat models of PD. The results demonstrated that the grafted RiPSCs-iNECs could survive in parkinsonian rat brain for at least 150 days, and many of them differentiated into tyrosine hydroxylase (TH)-positive cells. Furthermore, the PD model rats grafted with RiPSCs-iNECs exhibited a significant functional recovery from their parkinsonian behavioral defects. Histological studies showed that RiPSCs-iNECs could differentiate into multiple types of neurons including dopaminergic neurons, GFAP, Pax6, FoxA2 and DAT-positive cells, and induced dopaminergic neurons extended dense neurites into the host striatum. Thus, iPSCs derived primitive neuroepithelial cells could be an attractive candidate as a source of donor material for the treatment of PD, but the molecular mechanism needs further clarification.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Animales , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Células Neuroepiteliales/trasplante , Oxidopamina/toxicidad , Enfermedad de Parkinson/terapia , Ratas , Sustancia Negra
5.
Exp Ther Med ; 22(5): 1274, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34594411

RESUMEN

The association between long intergenic non-protein-coding RNA 963 (LINC00963) and diabetes has not been fully elucidated. Therefore, the present study aimed to investigate the effect of the long non-coding RNA LINC00963 on diabetic retinopathy (DR), in order to provide a new therapeutic target for this condition. Human retinal capillary endothelial cells (HRECs) were induced with high concentrations of glucose to establish a DR model. The expression levels of LINC00963, cell viability, the protein expression levels of proliferating cell nuclear antigen (PCNA) and Ki67, and the migratory capacity of HRECs were determined using reverse transcription-quantitative PCR (RT-qPCR), Cell Counting Kit-8 assay, western blot analysis, and wound healing and Transwell assays, respectively. Furthermore, the Encyclopedia of RNA Interactomes database was used to predict the binding targets of LINC00963, and luciferase reporter assay was used to verify the direct binding of microRNA (miR)-27b to LINC00963. RT-qPCR was also utilized to measure the expression levels of miR-27b, PCNA and Ki67. The results demonstrated that LINC00963 silencing inhibited glucose-induced HREC proliferation and migration, and downregulated PCNA and Ki67 expression. Following transfection with miR-27b inhibitor, cell proliferation and migration were notably enhanced, and the protein expression levels of PCNA and Ki67 were increased. Taken together, the results of the present study suggested that the LINC00963/miR-27b axis may regulate the proliferation and migration of glucose-induced HRECs. Therefore, LINC00963 may be considered as a potential therapeutic target for DR.

6.
Sci Rep ; 11(1): 17937, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508136

RESUMEN

Mesenchymal stem cells (MSCs) are associated with pulmonary protection and longevity. We separated chicken bone marrow-derived mesenchymal stem cells (BM-MSCs); investigated whether BM-MSCs can improve lipopolysaccharide (LPS)-induced lung and distal organ injury; and explored the underlying mechanisms. Ninety-six male ICR (6 weeks old) mice were randomly divided into three groups: Sham, LPS, and LPS + MSC groups. The mice were intratracheally injected with 5 mg/kg LPS to induce acute lung injury (ALI). The histopathological severity of injury to the lung, liver, kidney, heart, and aortic tissues was detected. Wet/dry ratio, protein concentrations in bronchoalveolar lavage fluid (BALF), BALF cell counts, inflammatory cytokine levels in serum, inflammatory cytokine gene expression, and oxidative stress-related indicators were detected. In addition, a survival analysis was performed in sixty male ICR mice (6 weeks old, 18-20 g). This study used chicken BM-MSCs, which are easier to obtain and more convenient than other animal or human MSCs, and have MSC-associated properties, such as a colony forming ability, multilineage differentiation potential, and certain phenotypes. BM-MSCs administration significantly improved the survival rate, systemic inflammation, and the histopathological severity of lung, liver, kidney, and aortic injury during ALI. BM-MSCs administration reduced the levels of inflammatory factors in BALF, the infiltration of neutrophils, and oxidative stress injury in lung tissue. In addition, BM-MSCs administration reduced TRL4 and Mdy88 mRNA expression during ALI. Chicken BM-MSCs serve as a potential alternative resource for stem cell therapy and exert a prominent effect on LPS-induced ALI and extrapulmonary injury, in part through TRL4/Mdy88 signaling and inhibition of neutrophil inflammation and oxidative stress injury.


Asunto(s)
Lesión Pulmonar Aguda/terapia , Pulmón/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Pollos , Citocinas/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo/fisiología
7.
Hortic Res ; 8(1): 115, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33931632

RESUMEN

Flowering time is known to be regulated by numerous pathways, such as the autonomous, gibberellin, aging, photoperiod-mediated, and vernalization pathways. These regulatory mechanisms involve both environmental triggers and endogenous hormonal cues. Additional flowering control mechanisms mediated by other phytohormones, such as auxin, are less well understood. We found that in cultivated strawberry (Fragaria × ananassa), the expression of auxin response factor4 (FaARF4) was higher in the flowering stage than in the vegetative stage. Overexpression of FaARF4 in Arabidopsis thaliana and woodland strawberry (Fragaria vesca) resulted in transgenic plants flowering earlier than control plants. In addition, FveARF4-silenced strawberry plants showed delayed flowering compared to control plants, indicating that FaARF4 and FveARF4 function similarly in regulating flowering. Further studies showed that ARF4 can bind to the promoters of the floral meristem identity genes APETALA1 (AP1) and FRUITFULL (FUL), inducing their expression and, consequently, flowering in woodland strawberry. Our studies reveal an auxin-mediated flowering pathway in strawberry involving the induction of ARF4 expression.

8.
Sci Rep ; 8(1): 10921, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30026481

RESUMEN

MicroRNAs are endogenous small non-coding RNAs that negatively regulate mRNAs, mainly at the post-transcriptional level, and play an important role in resistance response of plants. To date, there are few reports on resistance response of strawberry miRNAs to pathogens. In this study, using high-throughput sequencing, 134 conserved and 35 novel miRNAs were identified in six libraries within the treatment of Botrytis cinerea. A total 497 potential target genes were predicted using Fragaria vesca genome. Most of the differential expressed miRNAs in strawberry fruits were up-regulated in early libraries and down-regulated in late libraries. PIRL, the target gene of miR5290a, showed the opposite expressed trend compared with miR5290 from T1 to T3 libraries, and functional analysis of the PIRL gene shows that it has obvious resistance to B. cinerea in the strawberry fruits with overexpressed PIRL gene. We speculate that miR5290a negatively regulates its target gene PIRL to increase resistance to pathogen infection, and further analysis of PIRL function is meaningful for studying the plant-pathogen relationship and improving strawberry fruit quality and yield.


Asunto(s)
Botrytis/patogenicidad , Resistencia a la Enfermedad , Fragaria/microbiología , MicroARNs/genética , Fragaria/genética , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Plantas/genética , ARN de Planta/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA