Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 610(7933): 693-698, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36224389

RESUMEN

Soils are the foundation of all terrestrial ecosystems1. However, unlike for plants and animals, a global assessment of hotspots for soil nature conservation is still lacking2. This hampers our ability to establish nature conservation priorities for the multiple dimensions that support the soil system: from soil biodiversity to ecosystem services. Here, to identify global hotspots for soil nature conservation, we performed a global field survey that includes observations of biodiversity (archaea, bacteria, fungi, protists and invertebrates) and functions (critical for six ecosystem services) in 615 composite samples of topsoil from a standardized survey in all continents. We found that each of the different ecological dimensions of soils-that is, species richness (alpha diversity, measured as amplicon sequence variants), community dissimilarity and ecosystem services-peaked in contrasting regions of the planet, and were associated with different environmental factors. Temperate ecosystems showed the highest species richness, whereas community dissimilarity peaked in the tropics, and colder high-latitudinal ecosystems were identified as hotspots of ecosystem services. These findings highlight the complexities that are involved in simultaneously protecting multiple ecological dimensions of soil. We further show that most of these hotspots are not adequately covered by protected areas (more than 70%), and are vulnerable in the context of several scenarios of global change. Our global estimation of priorities for soil nature conservation highlights the importance of accounting for the multidimensionality of soil biodiversity and ecosystem services to conserve soils for future generations.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Mapeo Geográfico , Microbiología del Suelo , Suelo , Animales , Conservación de los Recursos Naturales/métodos , Suelo/parasitología , Invertebrados , Archaea
2.
Ecol Lett ; 27(1): e14351, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38111128

RESUMEN

Dominance of neotropical tree communities by a few species is widely documented, but dominant trees show a variety of distributional patterns still poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥2.5 cm diameter, 2609 species) to explore the relationships between local abundance, regional frequency and spatial aggregation of dominant species in four main habitat types in western Amazonia. Although the abundance-occupancy relationship is positive for the full dataset, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency and/or spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can be locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unravelling different dominance patterns is a research priority to direct conservation efforts in Amazonian forests.


Asunto(s)
Ecosistema , Bosques , Humanos , Árboles , Brasil , Biodiversidad
3.
Glob Chang Biol ; 30(5): e17350, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38804101

RESUMEN

With over one-third of terrestrial net primary productivity transferring to the litter layer annually, the carbon release from litter serves as a crucial valve in atmospheric carbon dioxide concentrations. However, few quantitative global projections of litter carbon release rate in response to climate change exist. Here, we combined a global foliar litter carbon release dataset (8973 samples) to generate spatially explicitly estimates of the response of their residence time (τ) to climate change. Results show a global mean litter carbon release rate ( k $$ k $$ ) of 0.69 year-1 (ranging from 0.09-5.6 year-1). Under future climate scenarios, global mean τ is projected to decrease by a mean of 2.7% (SSP 1-2.6) and 5.9% (SSP 5-8.5) during 2071-2100 period. Locally, the alleviation of temperature and moisture restrictions corresponded to obvious decreases in τ in cold and arid regions, respectively. In contract, τ in tropical humid broadleaf forests increased by 4.6% under SSP 5-8.5. Our findings highlight the vegetation type as a powerful proxy for explaining global patterns in foliar litter carbon release rates and the role of climate conditions in predicting responses of carbon release to climate change. Our observation-based estimates could refine carbon cycle parameterization, improving projections of carbon cycle-climate feedbacks.


Asunto(s)
Carbono , Cambio Climático , Hojas de la Planta , Hojas de la Planta/metabolismo , Carbono/metabolismo , Ciclo del Carbono , Bosques , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Calentamiento Global , Árboles/metabolismo
4.
PLoS Comput Biol ; 19(6): e1010684, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37307282

RESUMEN

The Ross-Macdonald model has exerted enormous influence over the study of malaria transmission dynamics and control, but it lacked features to describe parasite dispersal, travel, and other important aspects of heterogeneous transmission. Here, we present a patch-based differential equation modeling framework that extends the Ross-Macdonald model with sufficient skill and complexity to support planning, monitoring and evaluation for Plasmodium falciparum malaria control. We designed a generic interface for building structured, spatial models of malaria transmission based on a new algorithm for mosquito blood feeding. We developed new algorithms to simulate adult mosquito demography, dispersal, and egg laying in response to resource availability. The core dynamical components describing mosquito ecology and malaria transmission were decomposed, redesigned and reassembled into a modular framework. Structural elements in the framework-human population strata, patches, and aquatic habitats-interact through a flexible design that facilitates construction of ensembles of models with scalable complexity to support robust analytics for malaria policy and adaptive malaria control. We propose updated definitions for the human biting rate and entomological inoculation rates. We present new formulas to describe parasite dispersal and spatial dynamics under steady state conditions, including the human biting rates, parasite dispersal, the "vectorial capacity matrix," a human transmitting capacity distribution matrix, and threshold conditions. An [Formula: see text] package that implements the framework, solves the differential equations, and computes spatial metrics for models developed in this framework has been developed. Development of the model and metrics have focused on malaria, but since the framework is modular, the same ideas and software can be applied to other mosquito-borne pathogen systems.


Asunto(s)
Culicidae , Malaria Falciparum , Malaria , Adulto , Animales , Humanos , Malaria/epidemiología , Culicidae/fisiología , Ecología , Ecosistema
5.
Conserv Biol ; 38(2): e14187, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37768192

RESUMEN

Belowground biodiversity distribution does not necessarily reflect aboveground biodiversity patterns, but maps of soil biodiversity remain scarce because of limited data availability. Earthworms belong to the most thoroughly studied soil organisms and-in their role as ecosystem engineers-have a significant impact on ecosystem functioning. We used species distribution modeling (SDMs) and available data sets to map the spatial distribution of commonly observed (i.e., frequently recorded) earthworm species (Annelida, Oligochaeta) across Europe under current and future climate conditions. First, we predicted potential species distributions with commonly used models (i.e., MaxEnt and Biomod) and estimated total species richness (i.e., number of species in a 5 × 5 km grid cell). Second, we determined how much the different types of protected areas covered predicted earthworm richness and species ranges (i.e., distributions) by estimating the respective proportion of the range area. Earthworm species richness was high in central western Europe and low in northeastern Europe. This pattern was mainly associated with annual mean temperature and precipitation seasonality, but the importance of predictor variables to species occurrences varied among species. The geographical ranges of the majority of the earthworm species were predicted to shift to eastern Europe and partly decrease under future climate scenarios. Predicted current and future ranges were only poorly covered by protected areas, such as national parks. More than 80% of future earthworm ranges were on average not protected at all (mean [SD] = 82.6% [0.04]). Overall, our results emphasize the urgency of considering especially vulnerable earthworm species, as well as other soil organisms, in the design of nature conservation measures.


Efectos del clima sobre la distribución y conservación de la lombriz de tierra europea Resumen La distribución de la biodiversidad del subsuelo no refleja necesariamente los patrones de biodiversidad, pero los mapas de la biodiversidad del suelo aún son escasos debido a la disponibilidad limitada de datos. Las lombrices son uno de los organismos del suelo más estudiados a detalle­en su papel de ingenieros del ecosistema­y tienen un impacto significativo sobre el funcionamiento de ecosistema. Usamos modelos de distribución de especies (MDE) y conjuntos de datos disponibles para mapear la distribución espacial de las especies (Annelida, Oligochaeta) de lombrices más observadas (es decir, registradas con frecuencia) en toda Europa bajo el clima actual y el futuro. Primero pronosticamos la distribución potencial de las especies con modelos de uso común (MaxEnt y Biomod) y estimamos la riqueza total de especies (número de especies en una cuadrícula de 5 × 5 km). Después determinamos cuánto pronosticaban los diferentes tipos de áreas protegidas contempladas la riqueza de lombrices y la distribución de las especies mediante la estimación de la proporción respectiva del rango del área. La riqueza de especies fue alta en el occidente central y baja en el noreste de Europa. Este patrón estuvo asociado principalmente con la temperatura media anual y la estacionalidad de la precipitación, aunque la importancia de las variables de pronóstico para la presencia de la especie varió entre especies. Se pronosticó que la distribución geográfica de la mayoría de las especies cambiaría al este de Europa y disminuiría parcialmente bajo los escenarios climáticos futuros. El pronóstico de la distribución actual y futura contaba con una cobertura deficiente de las áreas protegidas, como los parques nacionales. En promedio, más del 80% de la distribución futura de las lombrices no estaba protegido (promedio [SD] = 82.6% [0.04]). En general, nuestros resultados destacan la urgencia por considerar a las especies vulnerables de lombrices, así como a otros organismos del suelo, en el diseño de las medidas de conservación.


Asunto(s)
Ecosistema , Oligoquetos , Animales , Conservación de los Recursos Naturales , Biodiversidad , Suelo , Cambio Climático
6.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33926962

RESUMEN

Newly available datasets present exciting opportunities to investigate how human population movement contributes to the spread of infectious diseases across large geographical distances. It is now possible to construct realistic models of infectious disease dynamics for the purposes of understanding global-scale epidemics. Nevertheless, a remaining unanswered question is how best to leverage the new data to parameterize models of movement, and whether one's choice of movement model impacts modeled disease outcomes. We adapt three well-studied models of infectious disease dynamics, the susceptible-infected-recovered model, the susceptible-infected-susceptible model, and the Ross-Macdonald model, to incorporate either of two candidate movement models. We describe the effect that the choice of movement model has on each disease model's results, finding that in all cases, there are parameter regimes where choosing one movement model instead of another has a profound impact on epidemiological outcomes. We further demonstrate the importance of choosing an appropriate movement model using the applied case of malaria transmission and importation on Bioko Island, Equatorial Guinea, finding that one model produces intelligible predictions of R0, whereas the other produces nonsensical results.


Asunto(s)
Enfermedades Transmisibles/epidemiología , Migración Humana , Malaria/epidemiología , Dinámica Poblacional , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/virología , Humanos , Malaria/parasitología , Modelos Teóricos
7.
New Phytol ; 240(5): 2035-2049, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37691273

RESUMEN

Recent studies on root traits have shown that there are two axes explaining trait variation belowground: the collaboration axis with mycorrhizal partners and the conservation ('fast - slow') axis. However, it is yet unknown whether these trait axes affect the assembly of soilborne fungi. We expect saprotrophic fungi to link to the conservation axis of root traits, whereas pathogenic and arbuscular mycorrhizal fungi link to the collaboration axis, but in opposite directions, as arbuscular mycorrhizal fungi might provide pathogen protection. To test these hypotheses, we sequenced rhizosphere fungal communities and measured root traits in monocultures of 25 grassland plant species, differing in age. Within the fungal guilds, we evaluated fungal species richness, relative abundance and community composition. Contrary to our hypotheses, fungal diversity and relative abundance were not strongly related to the root trait axes. However, saprotrophic fungal community composition was affected by the conservation gradient and pathogenic community composition by the collaboration gradient. The rhizosphere AMF community composition did not change along the collaboration gradient, even though the root trait axis was in line with the root mycorrhizal colonization rate. Overall, our results indicate that in the long term, the root trait axes are linked with fungal community composition.


Asunto(s)
Micorrizas , Rizosfera , Raíces de Plantas/microbiología , Pradera , Micorrizas/fisiología , Plantas/microbiología , Hongos/fisiología , Microbiología del Suelo , Suelo
8.
Malar J ; 22(1): 72, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859263

RESUMEN

BACKGROUND: Since 2004, malaria transmission on Bioko Island has declined significantly as a result of the scaling-up of control interventions. The aim of eliminating malaria from the Island remains elusive, however, underscoring the need to adapt control to the local context. Understanding the factors driving the risk of malaria infection is critical to inform optimal suits of interventions in this adaptive approach. METHODS: This study used individual and household-level data from the 2015 and 2018 annual malaria indicator surveys on Bioko Island, as well as remotely-sensed environmental data in multilevel logistic regression models to quantify the odds of malaria infection. The analyses were stratified by urban and rural settings and by survey year. RESULTS: Malaria prevalence was higher in 10-14-year-old children and similar between female and male individuals. After adjusting for demographic factors and other covariates, many of the variables investigated showed no significant association with malaria infection. The factor most strongly associated was history of travel to mainland Equatorial Guinea (mEG), which increased the odds significantly both in urban and rural settings (people who travelled had 4 times the odds of infection). Sleeping under a long-lasting insecticidal net decreased significantly the odds of malaria across urban and rural settings and survey years (net users had around 30% less odds of infection), highlighting their contribution to malaria control on the Island. Improved housing conditions indicated some protection, though this was not consistent across settings and survey year. CONCLUSIONS: Malaria risk on Bioko Island is heterogeneous and determined by a combination of factors interacting with local mosquito ecology. These interactions grant further investigation in order to better adapt control according to need. The single most important risk factor identified was travel to mEG, in line with previous investigations, and represents a great challenge for the success of malaria control on the Island.


Asunto(s)
Culicidae , Malaria , Niño , Animales , Humanos , Femenino , Masculino , Adolescente , Factores de Riesgo , Ecología , Guinea Ecuatorial
9.
Malar J ; 22(1): 323, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880774

RESUMEN

BACKGROUND: Indoor residual spraying (IRS) is a common vector control strategy in countries with high malaria burden. Historically, social norms have prevented women from working in IRS programmes. The Bioko Island Malaria Elimination Project has actively sought to reduce gender inequality in malaria control operations for many years by promoting women's participation in IRS. METHODS: This study investigated the progress of female engagement and compared spray productivity by gender from 2010 to 2021, using inferential tests and multivariable regression. Spray productivity was measured by rooms sprayed by spray operator per day (RSOD), houses sprayed by spray operator per day (HSOD), and the daily productivity ratio (DPR), defined as the ratio of RSOD to HSOD, which standardized productivity by house size. RESULTS: The percentage of women participating in IRS has increased over time. The difference in DPR comparing male and female spray operators was only statistically significant (p < 0.05) for two rounds, where the value was higher for women compared to men. Regression analyses showed marginal, significant differences in DPR between men and women, but beta coefficients were extremely small and thus not indicative of a measurable effect of gender on operational performance. CONCLUSIONS: The quantitative analyses of spray productivity are counter to stigmatizing beliefs that women are less capable than male counterparts during IRS spray rounds. The findings from this research support the participation of women in IRS campaigns, and a renewed effort to implement equitable policies and practices that intentionally engage women in vector control activities.


Asunto(s)
Insecticidas , Malaria , Humanos , Masculino , Femenino , Guinea Ecuatorial , Control de Mosquitos , Malaria/prevención & control
10.
Glob Chang Biol ; 28(8): 2779-2789, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35064621

RESUMEN

Unraveling the biogeographic pattern of soil fungal decomposers along temperature gradients-in smooth linearity or an abrupt jump-can help us connect the global carbon cycle to global warming. Through a standardized global field survey, we identify the existence of temperature thresholds that control the global distribution of soil fungal decomposers, leading to abrupt reductions in their proportion (i.e., the relative abundance in the fungal community) immediately after crossing particular air and soil temperature thresholds. For example, small increases over the mean annual temperature threshold of ~9°C result in abrupt reductions in their proportion, paralleling a similar temperature threshold for soil carbon content. We further find that the proportion of soil fungal decomposers is more sensitive to temperature increases under arid conditions. Given the positive correlation between the global distributions of fungal decomposers and soil heterotrophic respiration, the reported temperature-driven abrupt reductions in fungal decomposers could further suppress their driven soil decomposition processes and reduce carbon fluxes from soils to the atmosphere with implications for climate change feedback. This work not only advances the current knowledge on the global distribution of soil fungal decomposers, but also highlights that small changes in temperature around certain thresholds can lead to potential unexpected consequences in global carbon cycling under projected climate change.


Asunto(s)
Microbiología del Suelo , Suelo , Carbono , Ciclo del Carbono , Ecosistema , Temperatura
11.
Glob Chang Biol ; 28(6): 2146-2157, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34984772

RESUMEN

Land use is a key factor driving changes in soil carbon (C) cycle and contents worldwide. The priming effect (PE)-CO2 emissions from changed soil organic matter decomposition in response to fresh C inputs-is one of the most unpredictable phenomena associated with C cycling and related nutrient mobilization. Yet, we know very little about the influence of land use on soil PE across contrasting environments. Here, we conducted a continental-scale study to (i) determine the PE induced by 13 C-glucose additions to 126 cropland and seminatural (forests and grasslands) soils from 22 European countries; (ii) compare PE magnitude in soils under various crop types (i.e., cereals, nonpermanent industrial crops, and orchards); and (iii) model the environmental factors influencing PE. On average, PEs were negative in seminatural (with values ranging between -60 and 26 µg C g-1 soil after 35 days of incubation; median = -11) and cropland (from -55 to 27 µC g-1 soil; median = -4.3) soils, meaning that microbial communities preferentially switched from soil organic C decomposition to glucose mineralization. PE was significantly less negative in croplands compared with seminatural ecosystems and not influenced by the crop type. PE was driven by soil basal respiration (reflecting microbial activity), microbial biomass C, and soil organic C, which were all higher in seminatural ecosystems compared with croplands. This cross European experimental and modeling study elucidated that PE intensity is dependent on land use and allowed to clarify the factors regulating this important C cycling process.


Asunto(s)
Microbiota , Suelo , Biomasa , Carbono , Microbiología del Suelo
12.
Malar J ; 21(1): 23, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073934

RESUMEN

BACKGROUND: Surveillance programmes often use malaria rapid diagnostic tests (RDTs) to determine the proportion of the population carrying parasites in their peripheral blood to assess the malaria transmission intensity. Despite an increasing number of reports on false-negative and false-positive RDT results, there is a lack of systematic quality control activities for RDTs deployed in malaria surveillance programmes. METHODS: The diagnostic performance of field-deployed RDTs used for malaria surveys was assessed by retrospective molecular analysis of the blood retained on the tests. RESULTS: Of the 2865 RDTs that were collected in 2018 on Bioko Island and analysed in this study, 4.7% had a false-negative result. These false-negative RDTs were associated with low parasite density infections. In 16.6% of analysed samples, masked pfhrp2 and pfhrp3 gene deletions were identified, in which at least one Plasmodium falciparum strain carried a gene deletion. Among all positive RDTs analysed, 28.4% were tested negative by qPCR and therefore considered to be false-positive. Analysing the questionnaire data collected from the participants, this high proportion of false-positive RDTs could be explained by P. falciparum histidine rich protein 2 (PfHRP2) antigen persistence after recent malaria treatment. CONCLUSION: Malaria surveillance depending solely on RDTs needs well-integrated quality control procedures to assess the extent and impact of reduced sensitivity and specificity of RDTs on malaria control programmes.


Asunto(s)
Antígenos de Protozoos/análisis , Coinfección/diagnóstico , Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Malaria/diagnóstico , Vigilancia de la Población , Proteínas Protozoarias/análisis , Coinfección/epidemiología , Guinea Ecuatorial/epidemiología , Reacciones Falso Positivas , Incidencia , Malaria/epidemiología , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Ácidos Nucleicos/análisis , Plasmodium falciparum/aislamiento & purificación , Plasmodium malariae/aislamiento & purificación , Plasmodium ovale/aislamiento & purificación , Estudios Retrospectivos
13.
Malar J ; 21(1): 328, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376966

RESUMEN

BACKGROUND: In 2017, several new housing districts were constructed on Bioko Island, Equatorial Guinea. This case study assessed the impact construction projects had on mosquito larval habitats and the effectiveness of larval source management in reducing malaria vector density within the surrounding area. METHODS: Anopheline larval presence was assessed at 11 new construction sites by the proportion of larval habitats containing Anopheline pupae and late instar larval stages. Bacillus thuringiensis israelensis (Bti) larvicide was applied weekly to nine locations for 30 weeks, while two locations received no larvicide and acted as controls. Adult mosquito density was monitored via human landing collections in adjacent communities of six construction sites, including the two control sites. RESULTS: The sites that received Bti had significantly lower observation rates of both pupae (3.2% vs. 18.0%; p < 0.001) and late instar Anopheles spp. mosquitoes (14.1 vs. 43.6%; p < 0.001) compared to the two untreated sites. Anopheles spp. accounted for 67% of mosquitoes collected with human landing collections and were captured at significantly lower levels in communities adjacent to treated construction sites compared to untreated sites (p < 0.001), with an estimated 38% reduction in human biting rate (IRR: 0.62, 95% CI IRR: 0.55, 0.69). Seven months after the start of the study, untreated sites were treated due to ethical concerns given results from treatment sties, necessitating immediate Bti application. The following week, the number of habitats, the proportion of larval sites with Anopheles spp. pupae, late instars, and adult biting rates in adjacent communities to these sites all decreased to comparable levels across all sites. CONCLUSION: Findings suggest larval source management represents an effective intervention to suppress mosquito populations during infrastructure development. Incorporating larval source management into ongoing and planned construction initiatives represents an opportunity to fine tune vector control in response to anthropogenetic changes. Ideally, this should become standard practice in malaria-endemic regions in order to reduce viable mosquito habitats that are common by-products of construction.


Asunto(s)
Anopheles , Bacillus thuringiensis , Malaria , Animales , Humanos , Anopheles/fisiología , Malaria/epidemiología , Control de Mosquitos/métodos , Larva , Remodelación Urbana , Mosquitos Vectores , Pupa , Ecosistema
14.
Conserv Biol ; 36(5): e13930, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35510330

RESUMEN

Soil biodiversity and related ecosystem functions are neglected in most biodiversity assessments and nature conservation actions. We examined how society, and particularly policy makers, have addressed these factors worldwide with a focus on Europe and explored the role of soils in nature conservation in Germany as an example. We reviewed past and current global and European policies, compared soil ecosystem functioning in- and outside protected areas, and examined the role of soils in nature conservation management via text analyses. Protection and conservation of soil biodiversity and soil ecosystem functioning have been insufficient. Soil-related policies are unenforceable and lack soil biodiversity conservation goals, focusing instead on other environmental objectives. We found no evidence of positive effects of current nature conservation measures in multiple soil ecosystem functions in Europe. In German conservation management, soils are considered only from a limited perspective (e.g., as physicochemical part of the environment and as habitat for aboveground organisms). By exploring policy, evidence, and management as it relates to soil ecosystems, we suggest an integrative perspective to move nature conservation toward targeting soil ecosystems directly (e.g., by setting baselines, monitoring soil threats, and establishing a soil indicator system).


La biodiversidad del suelo y las funciones ambientales relacionadas se dejan de lado en la mayoría de las evaluaciones de la biodiversidad y de las acciones de conservación de la naturaleza. Analizamos cómo la sociedad, y particularmente los formuladores de políticas, han abordado estos factores a nivel mundial con un enfoque en Europa y exploramos como ejemplo el papel de los suelos en la conservación de la naturaleza en Alemania. Revisamos las políticas mundiales y europeas en el pasado y en la actualidad, comparamos el funcionamiento ambiental del suelo dentro y fuera de las áreas protegidas y examinamos el papel de los suelos en la gestión de la conservación por medio del análisis de textos. La protección y la conservación de la biodiversidad y el funcionamiento ambiental del suelo han sido insuficientes. Las políticas relacionadas con el suelo son inaplicables y carecen de objetivos de conservación para su biodiversidad, pues se enfocan más bien en otros objetivos ambientales. No descubrimos evidencias de los efectos positivos de las medidas actuales de conservación en múltiples funciones ambientales del suelo en Europa. En la gestión alemana de la conservación, los suelos sólo se consideran desde una perspectiva limitada (p. ej.: como una parte físico química del ambiente y como hábitat para los organismos que habitan por encima de él). Mediante la exploración de la política, evidencias y gestión conforme se relaciona con los ecosistemas del suelo, sugerimos una perspectiva integrada para dirigir a la conservación hacia el enfoque directo sobre los ecosistemas del suelo (p. ej.: al establecer líneas base, monitorear las amenazas para el suelo y establecer un sistema indicador del suelo).


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Suelo , Ecosistema , Europa (Continente)
15.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364460

RESUMEN

Improved methodological tools to hasten antimalarial drug discovery remain of interest, especially when considering natural products as a source of drug candidates. We propose a biodereplication method combining the classical dereplication approach with the early detection of potential antiplasmodial compounds in crude extracts. Heme binding is used as a surrogate of the antiplasmodial activity and is monitored by mass spectrometry in a biomimetic assay. Molecular networking and automated annotation of targeted mass through data mining were followed by mass-guided compound isolation by taking advantage of the versatility and finely tunable selectivity offered by centrifugal partition chromatography. This biodereplication workflow was applied to an ethanolic extract of the Amazonian medicinal plant Piper coruscans Kunth (Piperaceae) showing an IC50 of 1.36 µg/mL on the 3D7 Plasmodium falciparum strain. It resulted in the isolation of twelve compounds designated as potential antiplasmodial compounds by the biodereplication workflow. Two chalcones, aurentiacin (1) and cardamonin (3), with IC50 values of 2.25 and 5.5 µM, respectively, can be considered to bear the antiplasmodial activity of the extract, with the latter not relying on a heme-binding mechanism. This biodereplication method constitutes a rapid, efficient, and robust technique to identify potential antimalarial compounds in complex extracts such as plant extracts.


Asunto(s)
Antimaláricos , Piper , Plantas Medicinales , Plantas Medicinales/química , Antimaláricos/química , Hojas de la Planta/química , Plasmodium falciparum , Extractos Vegetales/química , Verduras , Hemo
16.
Malar J ; 20(1): 359, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34461902

RESUMEN

BACKGROUND: Malaria elimination is the goal for Bioko Island, Equatorial Guinea. Intensive interventions implemented since 2004 have reduced prevalence, but progress has stalled in recent years. A challenge for elimination has been malaria infections in residents acquired during travel to mainland Equatorial Guinea. The present article quantifies how off-island contributes to remaining malaria prevalence on Bioko Island, and investigates the potential role of a pre-erythrocytic vaccine in making further progress towards elimination. METHODS: Malaria transmission on Bioko Island was simulated using a model calibrated based on data from the Malaria Indicator Surveys (MIS) from 2015 to 2018, including detailed travel histories and malaria positivity by rapid-diagnostic tests (RDTs), as well as geospatial estimates of malaria prevalence. Mosquito population density was adjusted to fit local transmission, conditional on importation rates under current levels of control and within-island mobility. The simulations were then used to evaluate the impact of two pre-erythrocytic vaccine distribution strategies: mass treat and vaccinate, and prophylactic vaccination for off-island travellers. Lastly, a sensitivity analysis was performed through an ensemble of simulations fit to the Bayesian joint posterior probability distribution of the geospatial prevalence estimates. RESULTS: The simulations suggest that in Malabo, an urban city containing 80% of the population, there are some pockets of residual transmission, but a large proportion of infections are acquired off-island by travellers to the mainland. Outside of Malabo, prevalence was mainly attributable to local transmission. The uncertainty in the local transmission vs. importation is lowest within Malabo and highest outside. Using a pre-erythrocytic vaccine to protect travellers would have larger benefits than using the vaccine to protect residents of Bioko Island from local transmission. In simulations, mass treatment and vaccination had short-lived benefits, as malaria prevalence returned to current levels as the vaccine's efficacy waned. Prophylactic vaccination of travellers resulted in longer-lasting reductions in prevalence. These projections were robust to underlying uncertainty in prevalence estimates. CONCLUSIONS: The modelled outcomes suggest that the volume of malaria cases imported from the mainland is a partial driver of continued endemic malaria on Bioko Island, and that continued elimination efforts on must account for human travel activity.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Malaria/prevención & control , Viaje , Guinea Ecuatorial/epidemiología , Humanos , Malaria/epidemiología , Prevalencia
17.
Glob Ecol Biogeogr ; 30(5): 987-999, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33867861

RESUMEN

AIM: Soil microbes are essential for maintenance of life-supporting ecosystem services, but projections of how these microbes will be affected by global change scenarios are lacking. Therefore, our aim was to provide projections of future soil microbial distribution using several scenarios of global change. LOCATION: Global. TIME PERIOD: 1950-2090. MAJOR TAXA STUDIED: Bacteria and fungi. METHODS: We used a global database of soil microbial communities across six continents to estimate past and future trends of the soil microbiome. To do so, we used structural equation models to include the direct and indirect effects of changes in climate and land use in our predictions, using current climate (temperature and precipitation) and land-use projections between 1950 and 2090. RESULTS: Local bacterial richness will increase in all scenarios of change in climate and land use considered, although this increase will be followed by a generalized community homogenization process affecting > 85% of terrestrial ecosystems. Changes in the relative abundance of functional genes associated with the increases in bacterial richness are also expected. Based on an ecological cluster analysis, our results suggest that phylotypes such as Geodermatophilus spp. (typical desert bacteria), Mycobacterium sp. (which are known to include important human pathogens), Streptomyces mirabilis (major producers of antibiotic resistance genes) or potential fungal soil-borne plant pathogens belonging to Ascomycota fungi (Venturia spp., Devriesia spp.) will become more abundant in their communities. MAIN CONCLUSIONS: Our results provide evidence that climate change has a stronger influence on soil microbial communities than change in land use (often including deforestation and agricultural expansion), although most of the effects of climate are indirect, through other environmental variables (e.g., changes in soil pH). The same was found for microbial functions such as the prevalence of phosphate transport genes. We provide reliable predictions about the changes in the global distribution of microbial communities, showing an increase in alpha diversity and a homogenization of soil microbial communities in the Anthropocene.

18.
Glob Ecol Biogeogr ; 30(1): 4-10, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33692654

RESUMEN

The recent past has seen a tremendous surge in soil macroecological studies and new insights into the global drivers of one-quarter of the biodiversity of the Earth. Building on these important developments, a recent paper in Global Ecology and Biogeography outlined promising methods and approaches to advance soil macroecology. Among other recommendations, White and colleagues introduced the concept of a spatial three-dimensionality in soil macroecology by considering the different spheres of influence and scales, as soil organism size ranges vary from bacteria to macro- and megafauna. Here, we extend this concept by discussing three additional dimensions (biological, physical, and societal) that are crucial to steer soil macroecology from pattern description towards better mechanistic understanding. In our view, these are the requirements to establish it as a predictive science that can inform policy about relevant nature and management conservation actions. We highlight the need to explore temporal dynamics of soil biodiversity and functions across multiple temporal scales, integrating different facets of biodiversity (i.e., variability in body size, life-history traits, species identities, and groups of taxa) and their relationships to multiple ecosystem functions, in addition to the feedback effects between humans and soil biodiversity. We also argue that future research needs to consider effective soil conservation policy and management in combination with higher awareness of the contributions of soil-based nature's contributions to people. To verify causal relationships, soil macroecology should be paired with local and globally distributed experiments. The present paper expands the multidimensional perspective on soil macroecology to guide future research contents and funding. We recommend considering these multiple dimensions in projected global soil biodiversity monitoring initiatives.

19.
Basic Appl Ecol ; 55: 110-123, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34493930

RESUMEN

Research aimed at understanding the mechanisms underlying the relationship between tree diversity and antagonist infestation is often neglecting resource-use complementarity among plant species. We investigated the effects of tree species identity, species richness, and mycorrhizal type on leaf herbivory and pathogen infestation. We used a tree sapling experiment manipulating the two most common mycorrhizal types, arbuscular mycorrhiza and ectomycorrhiza, via respective tree species in monocultures and two-species mixtures. We visually assessed leaf herbivory and pathogen infestation rates, and measured concentrations of a suite of plant metabolites (amino acids, sugars, and phenolics), leaf elemental concentrations (carbon, nitrogen, and phosphorus), and tree biomass. Tree species and mycorrhizal richness had no significant effect on herbivory and pathogen infestation, whereas species identity and mycorrhizal type had. Damage rates were higher in arbuscular mycorrhizal (AM) than in ectomycorrhizal (EM) trees. Our structural equation model (SEM) indicated that elemental, but not metabolite concentrations, determined herbivory and pathogen infestation, suggesting that the investigated chemical defence strategies may not have been involved in the effects found in our study with tree saplings. Other chemical and physical defence strategies as well as species identity as its determinant may have played a more crucial role in the studied saplings. Furthermore, the SEM indicated a direct positive effect of AM trees on herbivory rates, suggesting that other dominant mechanisms, not considered here, were involved as well. We found differences in the attribution of elemental concentrations between the two rates. This points to the fact that herbivory and pathogen infestation are driven by distinct mechanisms. Our study highlights the importance of biotic contexts for understanding the mechanisms underlying the effects of biodiversity on tree-antagonist interactions.

20.
Lancet ; 394(10195): 332-343, 2019 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-31229233

RESUMEN

BACKGROUND: Plasmodium vivax exacts a significant toll on health worldwide, yet few efforts to date have quantified the extent and temporal trends of its global distribution. Given the challenges associated with the proper diagnosis and treatment of P vivax, national malaria programmes-particularly those pursuing malaria elimination strategies-require up to date assessments of P vivax endemicity and disease impact. This study presents the first global maps of P vivax clinical burden from 2000 to 2017. METHODS: In this spatial and temporal modelling study, we adjusted routine malariometric surveillance data for known biases and used socioeconomic indicators to generate time series of the clinical burden of P vivax. These data informed Bayesian geospatial models, which produced fine-scale predictions of P vivax clinical incidence and infection prevalence over time. Within sub-Saharan Africa, where routine surveillance for P vivax is not standard practice, we combined predicted surfaces of Plasmodium falciparum with country-specific ratios of P vivax to P falciparum. These results were combined with surveillance-based outputs outside of Africa to generate global maps. FINDINGS: We present the first high-resolution maps of P vivax burden. These results are combined with those for P falciparum (published separately) to form the malaria estimates for the Global Burden of Disease 2017 study. The burden of P vivax malaria decreased by 41·6%, from 24·5 million cases (95% uncertainty interval 22·5-27·0) in 2000 to 14·3 million cases (13·7-15·0) in 2017. The Americas had a reduction of 56·8% (47·6-67·0) in total cases since 2000, while South-East Asia recorded declines of 50·5% (50·3-50·6) and the Western Pacific regions recorded declines of 51·3% (48·0-55·4). Europe achieved zero P vivax cases during the study period. Nonetheless, rates of decline have stalled in the past five years for many countries, with particular increases noted in regions affected by political and economic instability. INTERPRETATION: Our study highlights important spatial and temporal patterns in the clinical burden and prevalence of P vivax. Amid substantial progress worldwide, plateauing gains and areas of increased burden signal the potential for challenges that are greater than expected on the road to malaria elimination. These results support global monitoring systems and can inform the optimisation of diagnosis and treatment where P vivax has most impact. FUNDING: Bill & Melinda Gates Foundation and the Wellcome Trust.


Asunto(s)
Enfermedades Endémicas/estadística & datos numéricos , Malaria Vivax/epidemiología , África/epidemiología , Américas/epidemiología , Asia Sudoriental/epidemiología , Teorema de Bayes , Salud Global , Humanos , Oceanía/epidemiología , Vigilancia de la Población , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA