Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 47(6): 851-62, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22959271

RESUMEN

Cells continually assess their energy and nutrient state to maintain growth and survival and engage necessary homeostatic mechanisms. Cell-autonomous responses to the fed state require the surveillance of the availability of amino acids and other nutrients. The mammalian target of rapamycin complex 1 (mTORC1) integrates information on nutrient and amino acid availability to support protein synthesis and cell growth. We identify the G protein-coupled receptor (GPCR) T1R1/T1R3 as a direct sensor of the fed state and amino acid availability. Knocking down this receptor, which is found in most tissues, reduces the ability of amino acids to signal to mTORC1. Interfering with this receptor alters localization of mTORC1, downregulates expression of pathway inhibitors, upregulates key amino acid transporters, blocks translation initiation, and induces autophagy. These findings reveal a mechanism for communicating amino acid availability through a GPCR to mTORC1 in mammals.


Asunto(s)
Autofagia , Células Secretoras de Insulina/metabolismo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Aminoácidos/metabolismo , Animales , Regulación hacia Abajo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos , Biosíntesis de Proteínas , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Serina-Treonina Quinasas TOR
2.
J Biol Chem ; 289(20): 14370-9, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24695728

RESUMEN

We have shown recently that the class C G protein-coupled receptor T1R1/T1R3 taste receptor complex is an early amino acid sensor in MIN6 pancreatic ß cells. Amino acids are unable to activate ERK1/2 in ß cells in which T1R3 has been depleted. The muscarinic receptor agonist carbachol activated ERK1/2 better in T1R3-depleted cells than in control cells. Ligands that activate certain G protein-coupled receptors in pancreatic ß cells potentiate glucose-stimulated insulin secretion. Among these is the M3 muscarinic acetylcholine receptor, the major muscarinic receptor in ß cells. We found that expression of M3 receptors increased in T1R3-depleted MIN6 cells and that calcium responses were altered. To determine whether these changes were related to impaired amino acid signaling, we compared responses in cells exposed to reduced amino acid concentrations. M3 receptor expression was increased, and some, but not all, changes in calcium signaling were mimicked. These findings suggest that M3 acetylcholine receptors are increased in ß cells as a mechanism to compensate for amino acid deficiency.


Asunto(s)
Aminoácidos/metabolismo , Células Secretoras de Insulina/metabolismo , Receptor Muscarínico M3/metabolismo , Transducción de Señal , Animales , Calcio/metabolismo , Carbacol/farmacología , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Secretoras de Insulina/citología , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Receptor Muscarínico M3/genética , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos
3.
Biochemistry ; 52(31): 5164-6, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23848362

RESUMEN

The mitogen-activated protein kinases (MAPKs) ERK1/2 regulate numerous cellular processes, including gene transcription, proliferation, and differentiation. The only known substrates of the MAP2Ks MEK1/2 are ERK1/2; thus, MEK inhibitors PD98059, U0126, and PD0325901 have been important tools in determining the functions of ERK1/2. By using these inhibitors and genetically manipulating MEK, we found that ERK1/2 activation is neither sufficient nor necessary for regulated secretion of insulin from pancreatic ß cells or secretion of epinephrine from chromaffin cells. We show that both PD98059 and U0126 reduce agonist-induced entry of calcium into cells in a manner independent of their ability to inhibit ERK1/2. Caution should be used when interpreting results from experiments using these compounds.


Asunto(s)
Células Cromafines/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Animales , Benzamidas/farmacología , Butadienos/farmacología , Calcio/metabolismo , Línea Celular , Células Cromafines/metabolismo , Difenilamina/análogos & derivados , Difenilamina/farmacología , Epinefrina/metabolismo , Flavonoides/farmacología , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Ratones , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Nitrilos/farmacología
4.
Mol Pharmacol ; 83(1): 191-205, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23071106

RESUMEN

Tolbutamide and gliclazide block the K(ATP) channel K(ir)6.2/Sur1, causing membrane depolarization and stimulating insulin secretion in pancreatic beta cells. We examined the ability of the EPAC-selective cAMP analog 8-pCPT-2'-O-Me-cAMP-AM to potentiate the action of these drugs and the mechanism that might account for it. Insulin secretion stimulated by both 200 µM tolbutamide and 20 µM gliclazide, concentrations that had equivalent effects on membrane potential, was inhibited by thapsigargin (1 µM) or the L-type Ca(2+) channel blocker nicardipine (2 µM) and was potentiated by 8-pCPT-2'-O-Me-cAMP-AM at concentrations ≥2 µM in INS-1 cells. Ca(2+) transients stimulated by either tolbutamide or gliclazide were inhibited by thapsigargin or nicardipine and were significantly potentiated by 8-pCPT-2'-O-Me-cAMP-AM at 5 µM but not 1 µM. Both tolbutamide and gliclazide stimulated phospholipase C activity; however, only gliclazide did so independently of its activity at K(ATP) channels, and this activity was partially inhibited by pertussis toxin. 8-pCPT-2'-O-Me-cAMP-AM alone (5 µM) did not stimulate insulin secretion, but did increase intracellular Ca(2+) concentration significantly, and this activity was inhibited by 25 µM 2-aminoethoxydiphenylborate (2-APB) or the removal of extracellular Ca(2+). 8-pCPT-2'-O-Me-cAMP-AM potentiation of insulin secretion stimulated by tolbutamide was markedly inhibited by 2-APB (25 µM) and enhanced by the PKC inhibitor bisindolylmaleimide I (1 µM). Our data demonstrate that the actions of both tolbutamide and gliclazide are strongly potentiated by 8-pCPT-2'-O-Me-cAMP-AM, that gliclazide can stimulate phospholipase C activity via a partially pertussis toxin-sensitive mechanism, and that 8-pCPT-2'-O-Me-cAMP-AM potentiation of tolbutamide action may involve activation of a 2-APB-sensitive Ca(2+) influx.


Asunto(s)
Compuestos de Boro/farmacología , AMP Cíclico/análogos & derivados , Gliclazida/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hipoglucemiantes/farmacología , Tolbutamida/farmacología , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/fisiología , Línea Celular Tumoral , AMP Cíclico/farmacología , Sinergismo Farmacológico , Activación Enzimática , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Indoles/farmacología , Insulina/metabolismo , Secreción de Insulina , Espacio Intracelular/metabolismo , Canales KATP/fisiología , Maleimidas/farmacología , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo
5.
J Pharmacol Exp Ther ; 331(2): 724-32, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19710366

RESUMEN

The incretin peptides, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), potentiate glucose-stimulated insulin secretion (GSIS) and beta-cell proliferation and differentiation. Ca(2+) influx via voltage-gated L-type Ca(2+) channels is required for GLP-1 and GIP potentiation of GSIS. We investigated the role of the L-type Ca(2+) channels Ca(v)1.2 and Ca(v)1.3 in mediating GLP-1- and GIP-stimulated events in INS-1 cells and INS-1 cell lines expressing dihydropyridine-insensitive (DHPi) mutants of either Ca(v)1.2 or Ca(v)1.3. Ca(v)1.3/DHPi channels supported full potentiation of GSIS by GLP-1 (50 nM) compared with untransfected INS-1 cells. However, GLP-1-potentiated GSIS mediated by Ca(v)1.2/DHPi channels was markedly reduced compared with untransfected INS-1 cells. In contrast, GIP (10 nM) potentiation of GSIS mediated by both Ca(v)1.2/DHPi and Ca(v)1.3/DHPi channels was similar to that observed in untransfected INS-1 cells. Disruption of intracellular Ca(2+) release with thapsigargin, ryanodine, or 2-aminoethyldiphenylborate and inhibition of protein kinase A (PKA) or protein kinase C (PKC) significantly reduced GLP-1 potentiation of GSIS by Ca(v)1.3/DHPi channels and by endogenous L-type channels in INS-1 cells, but not by Ca(v)1.2/DHPi channels. Inhibition of glucose-stimulated phospholipase C activity with 1-(6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122) did not inhibit potentiation of GSIS by GLP-1 in INS-1 cells. In contrast, wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and 2'-amino-3'-methoxyflavone (PD98059), an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase, both markedly inhibited GLP-1 potentiation of GSIS by endogenous channels in INS-1 cells and Ca(v)1.3/DHPi channels, but not by Ca(v)1.2/DHPi channels. Thus, Ca(v)1.3 is preferentially coupled to GLP-1 potentiation of GSIS in INS-1 cells via a mechanism that requires intact intracellular Ca(2+) stores, PKA and PKC activity, and activation of ERK1/2.


Asunto(s)
Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo T/efectos de los fármacos , Péptido 1 Similar al Glucagón/farmacología , Glucosa/farmacología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo T/genética , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dihidropiridinas/farmacología , Polipéptido Inhibidor Gástrico/farmacología , Indicadores y Reactivos , Células Secretoras de Insulina/efectos de los fármacos , Mutación , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/fisiología , Plásmidos/genética , Cloruro de Potasio/farmacología , Proteína Quinasa C/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Estimulación Química
6.
J Pharmacol Exp Ther ; 330(1): 283-93, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19351867

RESUMEN

L-type Ca(2+) channels play a key role in the integration of physiological signals regulating insulin secretion that probably requires their localization to specific subdomains of the plasma membrane. We investigated the role of the intracellular II-III loop domains of the L-type channels Ca(v)1.2 and 1.3 in coupling of Ca(2+) influx with glucose-stimulated insulin secretion (GSIS) potentiated by the incretin hormone glucagon-like peptide (GLP)-1. In INS-1 cell lines expressing the Ca(v)1.2/II-III or Ca(v)1.3/II-III peptides, GLP-1 potentiation of GSIS was inhibited markedly, coincident with a decrease in GLP-1-stimulated cAMP accumulation and the redistribution of Ca(v)1.2 and Ca(v)1.3 out of lipid rafts. Neither the Ca(v)1.2/II-III nor the Ca(v)1.3/II-III peptide decreased L-type current density compared with untransfected INS-1 cells. GLP-1 potentiation of GSIS was restored by the L-type channel agonist 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylic acid methyl ester (FPL-64176). In contrast, potentiation of GSIS by 8-bromo-cAMP (8-Br-cAMP) was inhibited in Ca(v)1.2/II-III but not Ca(v)1.3/II-III cells. These differences may involve unique protein-protein interactions because the Ca(v)1.2/II-III peptide, but not the Ca(v)1.3/II-III peptide, immunoprecipitates Rab3-interacting molecule (RIM) 2 from INS-1 cell lysates. RIM2, and its binding partner Piccolo, localize to lipid rafts, and they may serve as anchors for Ca(v)1.2 localization to lipid rafts in INS-1 cells. These findings suggest that the II-III interdomain loops of Ca(v)1.2, and possibly Ca(v)1.3, direct these channels to membrane microdomains in which the proteins that mediate potentiation of GSIS by GLP-1 and 8-Br-cAMP assemble.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Insulina/metabolismo , Líquido Intracelular/fisiología , Microdominios de Membrana/metabolismo , Animales , Canales de Calcio Tipo L/biosíntesis , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Línea Celular Tumoral , Péptido 1 Similar al Glucagón/fisiología , Receptor del Péptido 1 Similar al Glucagón , Glucosa/fisiología , Humanos , Secreción de Insulina , Líquido Intracelular/química , Líquido Intracelular/metabolismo , Microdominios de Membrana/fisiología , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína/fisiología , Estructura Terciaria de Proteína/fisiología , Ratas , Receptores de Glucagón/metabolismo , Receptores de Glucagón/fisiología
7.
FEBS Open Bio ; 7(2): 174-186, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28174684

RESUMEN

The sweetener sucralose can signal through its GPCR receptor to induce insulin secretion from pancreatic ß cells, but the downstream signaling pathways involved are not well-understood. Here we measure responses to sucralose, glucagon-like peptide 1, and amino acids in MIN6 ß cells. Our data suggest a signaling axis, whereby sucralose induces calcium and cAMP, activation of ERK1/2, and site-specific phosphorylation of ribosomal protein S6. Interestingly, sucralose acted independently of mTORC1 or ribosomal S6 kinase (RSK). These results suggest that sweeteners like sucralose can influence ß-cell responses to secretagogues like glucose through metabolic as well as GPCR-mediated pathways. Future investigation of novel sweet taste receptor signaling pathways in ß cells will have implications for diabetes and other emergent fields involving these receptors.

8.
Sci Signal ; 10(485)2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28655862

RESUMEN

Constitutive WNT activity drives the growth of various human tumors, including nearly all colorectal cancers (CRCs). Despite this prominence in cancer, no WNT inhibitor is currently approved for use in the clinic largely due to the small number of druggable signaling components in the WNT pathway and the substantial toxicity to normal gastrointestinal tissue. We have shown that pyrvinium, which activates casein kinase 1α (CK1α), is a potent inhibitor of WNT signaling. However, its poor bioavailability limited the ability to test this first-in-class WNT inhibitor in vivo. We characterized a novel small-molecule CK1α activator called SSTC3, which has better pharmacokinetic properties than pyrvinium, and found that it inhibited the growth of CRC xenografts in mice. SSTC3 also attenuated the growth of a patient-derived metastatic CRC xenograft, for which few therapies exist. SSTC3 exhibited minimal gastrointestinal toxicity compared to other classes of WNT inhibitors. Consistent with this observation, we showed that the abundance of the SSTC3 target, CK1α, was decreased in WNT-driven tumors relative to normal gastrointestinal tissue, and knocking down CK1α increased cellular sensitivity to SSTC3. Thus, we propose that distinct CK1α abundance provides an enhanced therapeutic index for pharmacological CK1α activators to target WNT-driven tumors.


Asunto(s)
Antineoplásicos/farmacología , Benzoatos/farmacología , Caseína Quinasa Ialfa/metabolismo , Activadores de Enzimas/farmacología , Neoplasias/tratamiento farmacológico , Proteínas Wnt/metabolismo , Animales , Activación Enzimática , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Metástasis de la Neoplasia , Técnicas de Cultivo de Órganos , Fosforilación , Compuestos de Pirvinio/química , Transducción de Señal , Resonancia por Plasmón de Superficie , Vía de Señalización Wnt , Ensayos Antitumor por Modelo de Xenoinjerto , Xenopus laevis
9.
Mol Cell Endocrinol ; 419: 60-71, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26435461

RESUMEN

We previously reported that INS-1 cells expressing the intracellular II-III loop of the L-type Ca(2+) channel Cav1.2 (Cav1.2/II-III cells) are deficient in Ca(2+)-induced Ca(2+) release (CICR). Here we show that glucose-stimulated ERK 1/2 phosphorylation (GSEP) is slowed and reduced in Cav1.2/II-III cells compared to INS-1 cells. This parallels a decrease in glucose-stimulated cAMP accumulation (GS-cAMP) in Cav1.2/II-III cells. Influx of Ca(2+) via L-type Ca(2+) channels and CICR play roles in both GSEP and GS-cAMP in INS-1 cells since both are inhibited by nicardipine or ryanodine. Further, the Epac1-selective inhibitor CE3F4 abolishes glucose-stimulated ERK activation in INS-1 cells, as measured using the FRET-based sensor EKAR. The non-selective Epac antagonist ESI-09 but not the Epac2-selective antagonist ESI-05 nor the PKA antagonist Rp-cAMPs inhibits GSEP in both INS-1 and Cav1.2/II-III cells. We conclude that L-type Ca(2+) channel-dependent cAMP accumulation, that's amplified by CICR, activates Epac1 and drives GSEP in INS-1 cells.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Derivados del Benceno/farmacología , Glucosa/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Nicardipino/farmacología , Fosforilación/efectos de los fármacos , Quinolinas/farmacología , Ratas , Rianodina/farmacología , Sulfonas/farmacología
10.
Mol Endocrinol ; 29(8): 1114-22, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26168033

RESUMEN

The MAPKs ERK1/2 respond to nutrients and other insulin secretagogues in pancreatic ß-cells and mediate nutrient-dependent insulin gene transcription. Nutrients also stimulate the mechanistic target of rapamycin complex 1 (mTORC1) to regulate protein synthesis. We showed previously that activation of both ERK1/2 and mTORC1 in the MIN6 pancreatic ß-cell-derived line by extracellular amino acids (AAs) is at least in part mediated by the heterodimeric T1R1/T1R3, a G protein-coupled receptor. We show here that AAs differentially activate these two signaling pathways in MIN6 cells. Pretreatment with pertussis toxin did not prevent the activation of either ERK1/2 or mTORC1 by AAs, indicating that G(I) is not central to either pathway. Although glucagon-like peptide 1, an agonist for a G(s-)coupled receptor, activated ERK1/2 well and mTORC1 to a small extent, AAs had no effect on cytosolic cAMP accumulation. Ca(2+) entry is required for ERK1/2 activation by AAs but is dispensable for AA activation of mTORC1. Pretreatment with UBO-QIC, a selective G(q) inhibitor, reduced the activation of ERK1/2 but had little effect on the activation of mTORC1 by AAs, suggesting a differential requirement for G(q). Inhibition of G(12/13) by the overexpression of the regulator of G protein signaling domain of p115 ρ-guanine nucleotide exchange factor had no effect on mTORC1 activation by AAs, suggesting that these G proteins are also not involved. We conclude that AAs regulate ERK1/2 and mTORC1 through distinct signaling pathways.


Asunto(s)
Aminoácidos/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Complejos Multiproteicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , Endosomas/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Células Secretoras de Insulina/citología , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Neuronas/metabolismo , Multimerización de Proteína
11.
Mol Biol Cell ; 25(11): 1782-92, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24719457

RESUMEN

Cigarette smoking is a major risk factor for acquisition of small cell lung cancer (SCLC). A role has been demonstrated for the basic helix-loop-helix transcription factor NeuroD1 in the pathogenesis of neural and neuroendocrine lung cancer, including SCLC. In the present study we investigate the possible function of NeuroD1 in established tumors, as well as actions early on in pathogenesis, in response to nicotine. We demonstrate that nicotine up-regulates NeuroD1 in immortalized normal bronchial epithelial cells and a subset of undifferentiated carcinomas. Increased expression of NeuroD1 subsequently leads to regulation of expression and function of the nicotinic acetylcholine receptor subunit cluster of α3, α5, and ß4. In addition, we find that coordinated expression of these subunits by NeuroD1 leads to enhanced nicotine-induced migration and invasion, likely through changes in intracellular calcium. These findings suggest that aspects of the pathogenesis of neural and neuroendocrine lung cancers may be affected by a nicotine- and NeuroD1-induced positive feedback loop.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/patología , Movimiento Celular/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Nicotina/farmacología , Subunidades de Proteína/metabolismo , Receptores Nicotínicos/metabolismo , Bronquios/patología , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Células Clonales , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Neoplasias Pulmonares/patología , Modelos Biológicos , Mutación , Invasividad Neoplásica , Receptor trkB/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos
12.
Mol Endocrinol ; 28(4): 458-76, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24506535

RESUMEN

We investigated the role of Cav1.2 in pancreatic ß-cell function by expressing a Cav1.2 II-III loop/green fluorescent protein fusion in INS-1 cells (Cav1.2/II-III cells) to disrupt channel-protein interactions. Neither block of KATP channels nor stimulation of membrane depolarization by tolbutamide was different in INS-1 cells compared with Cav1.2/II-III cells, but whole-cell Cav current density was significantly increased in Cav1.2/II-III cells. Tolbutamide (200 µM) stimulated insulin secretion and Ca(2+) transients in INS-1 cells, and Cav1.2/II-III cells were completely blocked by nicardipine (2 µM), but thapsigargin (1 µM) blocked tolbutamide-stimulated secretion and Ca(2+) transients only in INS-1 cells. Tolbutamide-stimulated endoplasmic reticulum [Ca(2+)] decrease was reduced in Cav1.2/II-III cells compared with INS-1 cells. However, Ca(2+) transients in both INS-1 cells and Cav1.2/II-III cells were significantly potentiated by 8-pCPT-2'-O-Me-cAMP (5 µM), FPL-64176 (0.5 µM), or replacement of extracellular Ca(2+) with Sr(2+). Glucose (10 mM) + glucagon-like peptide-1 (10 nM) stimulated discrete spikes in [Ca(2+)]i in the presence of verapamil at a higher frequency in INS-1 cells than in Cav1.2/II-II cells. Glucose (18 mM) stimulated more frequent action potentials in Cav1.2/II-III cells and primary rat ß-cells expressing the Cav1.2/II-II loop than in control cells. Further, apamin (1 µM) increased glucose-stimulated action potential frequency in INS-1 cells, but not Cav1.2/II-III cells, suggesting that SK channels were not activated under these conditions in Cav1.2/II-III loop-expressing cells. We propose the II-III loop of Cav1.2 as a key molecular determinant that couples the channel to Ca(2+)-induced Ca(2+) release and activation of SK channels in pancreatic ß-cells.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Calcio/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Canales de Calcio Tipo L/química , Fraccionamiento Celular , Centrifugación por Gradiente de Densidad , AMP Cíclico/análogos & derivados , Endocitosis/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/farmacología , Inmunoprecipitación , Insulina/metabolismo , Secreción de Insulina , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Masculino , Estructura Secundaria de Proteína , Ratas , Ratas Wistar , Tolbutamida/farmacología , Verapamilo/farmacología , Proteínas Activadoras de ras GTPasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA