Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO Rep ; 21(6): e49234, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32270908

RESUMEN

Centrosome amplification is a hallmark of cancer, and centrosome clustering is essential for cancer cell survival. The mitotic kinesin HSET is an essential contributor to this process. Recent studies have highlighted novel functions for intraflagellar transport (IFT) proteins in regulating motors and mitotic processes. Here, using siRNA knock-down of various IFT proteins or AID-inducible degradation of endogenous IFT88 in combination with small-molecule inhibition of HSET, we show that IFT proteins together with HSET are required for efficient centrosome clustering. We identify a direct interaction between the kinesin HSET and IFT proteins, and we define how IFT proteins contribute to clustering dynamics during mitosis using high-resolution live imaging of centrosomes. Finally, we demonstrate the requirement of IFT88 for efficient centrosome clustering in a variety of cancer cell lines naturally harboring supernumerary centrosomes and its importance for cancer cell proliferation. Overall, our data unravel a novel role for the IFT machinery in centrosome clustering during mitosis in cells harboring supernumerary centrosomes.


Asunto(s)
Proteínas Portadoras , Centrosoma , Proteínas Portadoras/genética , Centrosoma/metabolismo , Análisis por Conglomerados , Cinesinas/genética , Cinesinas/metabolismo , Mitosis/genética
2.
J Struct Biol ; 181(2): 169-78, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23178680

RESUMEN

Single-axis cryo-electron tomography of vitrified specimens has become a method of choice to reconstruct in three dimensions macromolecular assemblies in their cellular context or prepared from purified components. Here, we asked how a dual-axis acquisition scheme would improve three-dimensional reconstructions of microtubules assembled in vitro. We show that in single-axis tomograms, microtubules oriented close to the perpendicular of the tilt axis display diminished contrast, and ultimately transform into sets of parallel lines oriented in the direction of the electron beam when observed in cross-section. Analysis of their three-dimensional Fourier transform indicates that this imaging artifact is due to a decrease in the angular sampling of their equatorial components. Although the second orthogonal series does not fully complement the first one at the specimen level due to increased radiation damage, it still allows elongated features oriented in any directions to be correctly reconstructed, which might be essential for highly heterogeneous specimens such as cells.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Microtúbulos/ultraestructura , Tomografía Computarizada por Rayos X/métodos , Análisis de Fourier , Guanosina Trifosfato/análogos & derivados
3.
Front Cell Dev Biol ; 8: 578239, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072760

RESUMEN

Cilia are small organelles present at the surface of most differentiated cells where they act as sensors for mechanical or biochemical stimuli. Cilia assembly and function require the Intraflagellar Transport (IFT) machinery, an intracellular transport system that functions in association with microtubules and motors. If IFT proteins have long been studied for their ciliary roles, recent evidences indicate that their functions are not restricted to the cilium. Indeed, IFT proteins are found outside the ciliary compartment where they are involved in a variety of cellular processes in association with non-ciliary motors. Recent works also provide evidence that non-ciliary roles of IFT proteins could be responsible for the development of ciliopathies related phenotypes including polycystic kidney diseases. In this review, we will discuss the interactions of IFT proteins with microtubules and motors as well as newly identified non-ciliary functions of IFT proteins, focusing on their roles in cell division. We will also discuss the potential contribution of non-ciliary IFT proteins functions to the etiology of kidney diseases.

4.
Methods Mol Biol ; 1880: 3-15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30610687

RESUMEN

This chapter describes the recombinant overexpression of the canonical selective autophagy receptor p62/SQSTM1 in E. coli and affinity purification. Also described is the method to induce p62 filament assembly and their visualization by negative stain electron microscopy (EM). In cells, p62 forms large structures termed p62 bodies and has been shown to be aggregation prone. This tendency to aggregate poses problems for expression and purification in vitro, which is a prerequisite for structural analysis. Here, we describe the method to express and purify soluble p62, using the solubility tag, MBP, in conjunction with autoinduction. Furthermore, we describe the protocol to assemble p62 into filaments by controlling the ionic strength of its buffer, as well as the preparation of negative stain EM grids to visualize the filaments. In vitro formed p62 filaments can be used to study receptor cargo interactions in minimal reconstituted autophagy model systems.


Asunto(s)
Escherichia coli/genética , Microscopía Electrónica/métodos , Coloración Negativa/métodos , Proteína Sequestosoma-1/ultraestructura , Autofagia , Cromatografía de Afinidad/métodos , Expresión Génica , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/ultraestructura , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/aislamiento & purificación , Solubilidad , Regulación hacia Arriba
5.
Nat Cell Biol ; 18(10): 1102-8, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27617931

RESUMEN

EB1 is a microtubule plus-end tracking protein that recognizes GTP-tubulin dimers in microtubules and thus represents a unique probe to investigate the architecture of the GTP cap of growing microtubule ends. Here, we conjugated EB1 to gold nanoparticles (EB1-gold) and imaged by cryo-electron tomography its interaction with dynamic microtubules assembled in vitro from purified tubulin. EB1-gold forms comets at the ends of microtubules assembled in the presence of GTP, and interacts with the outer surface of curved and straight tubulin sheets as well as closed regions of the microtubule lattice. Microtubules assembled in the presence of GTP, different GTP analogues or cell extracts display similarly curved sheets at their growing ends, which gradually straighten as their protofilament number increases until they close into a tube. Together, our data provide unique structural information on the interaction of EB1 with growing microtubule ends. They further offer insights into the conformational changes that tubulin dimers undergo during microtubule assembly and the architecture of the GTP-cap region.


Asunto(s)
Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Línea Celular , Guanosina Trifosfato/metabolismo , Humanos , Unión Proteica/fisiología , Conformación Proteica , Tubulina (Proteína)/metabolismo
6.
Cell Rep ; 11(5): 748-58, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25921531

RESUMEN

The scaffold protein p62/SQSTM1 is involved in protein turnover and signaling and is commonly found in dense protein bodies in eukaryotic cells. In autophagy, p62 acts as a selective autophagy receptor that recognizes and shuttles ubiquitinated proteins to the autophagosome for degradation. The structural organization of p62 in cellular bodies and the interplay of these assemblies with ubiquitin and the autophagic marker LC3 remain to be elucidated. Here, we present a cryo-EM structural analysis of p62. Together with structures of assemblies from the PB1 domain, we show that p62 is organized in flexible polymers with the PB1 domain constituting a helical scaffold. Filamentous p62 is capable of binding LC3 and addition of long ubiquitin chains induces disassembly and shortening of filaments. These studies explain how p62 assemblies provide a large molecular scaffold for the nascent autophagosome and reveal how they can bind ubiquitinated cargo.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Células HeLa , Humanos , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteína Sequestosoma-1 , Electricidad Estática , Ubiquitina/química , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA