Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomaterials ; 291: 121877, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36347132

RESUMEN

Extracellular vesicles (EV) are increasingly recognized as a therapeutic option in heart failure. They are usually administered by direct intramyocardial injections with the caveat of a rapid wash-out from the myocardium which might weaken their therapeutic efficacy. To improve their delivery in the failing myocardium, we designed a system consisting of loading EV into a clinical-grade hyaluronic acid (HA) biomaterial. EV were isolated from umbilical cord-derived mesenchymal stromal cells. The suitability of HA as a delivery platform was then assessed in vitro. Rheology studies demonstrated the viscoelastic and shear thinning behaviors of the selected HA allowing its easy injection. Moreover, the release of HA-embedded EV was sustained over more than 10 days, and EV bioactivity was not altered by the biomaterial. In a rat model of myocardial ischemia reperfusion, we showed that HA-embedded EV preserved cardiac function (echocardiography), improved angiogenesis and decreased both apoptosis and fibrosis (histology and transcriptomics) when compared to intramyocardial administration of EV alone. These data thus strengthen the concept that inclusion of EV into a clinically useable biomaterial might optimize their beneficial effects on post-ischemic cardiac repair.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Infarto del Miocardio , Animales , Ratas , Materiales Biocompatibles , Infarto del Miocardio/patología , Miocardio/patología , Células Madre Mesenquimatosas/patología , Ácido Hialurónico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA