Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 242: 117750, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029822

RESUMEN

Nitrogen (N) fertilization profoundly improves crop agronomic yield but triggers reactive N (Nr) loss into the environment. Nitrous (N2O) and ammonia (NH3) emissions are the main Nr species that affect climate change and eco-environmental health. Biochar is considered a promising soil amendment, and its efficacy on individual Nr gas emission reduction has been widely reported. However, the interactions and trade-offs between these two Nr species after biochar addition have not been comprehensively analysed. The influencing factors, such as biochar characteristics, environmental conditions, and management measures, remain uncertain. Therefore, 35 publications (145 paired observations) were selected for a meta-analysis to explore the simultaneous mitigation potential of biochar on N2O and NH3 emissions after its application on arable soil. The results showed that biochar application significantly reduced N2O emission by 7.09% while having no significant effect on NH3 volatilisation. Using biochar with a low pH, moderate BET, or pyrolyzed under moderate temperatures could jointly mitigate N2O and NH3 emissions. Additionally, applying biochar to soils with moderate soil organic carbon, high soil total nitrogen, or low cation exchange capacity showed similar responses. The machine-learning model suggested that biochar pH is a dominating moderator of its efficacy in mitigating N2O and NH3 emissions simultaneously. The findings of this study have major implications for biochar application management and aid the further realisation of the multifunctionality of biochar application in agriculture, which could boost agronomic production while lowering environmental costs.


Asunto(s)
Carbono , Carbón Orgánico , Suelo , Óxido Nitroso , Fertilizantes/análisis , Agricultura/métodos , Nitrógeno/análisis
2.
Sci Total Environ ; 934: 173256, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763195

RESUMEN

Green manuring is a conservation agricultural practice that improves soil quality and crop yield. However, increasing the active nitrogen (N) and carbon (C) pools during green manure (GM) amendment may accelerate soil N transformation and stimulate N loss. Previous studies have reported the effects of cover crop incorporation on N2O emission; however, the driving mechanisms and other N losses remain unclear. Therefore, we conducted a comprehensive meta-analysis of 109 published articles (517 paired observations) to clarify the effects of GM amendment on soil reactive N (Nr) losses (N2O emissions, NH3 volatilization, and N leaching and runoff), N pools, and N cycling functional gene abundance. The results showed that green manuring increased soil microbial biomass N (MBN) and NO3--N concentrations and stimulated N2O emission but significantly lowered N leaching and yield-scaled NH3 volatilization. Practices of green manuring made a dominant contribution to the variation in N2O emissions and NH3 volatilization after GM application. Furthermore, applying legume-based GM, using N derived from GM (GMN) as an additional input, and short-term GM amendment each stimulated N2O emissions. In contrast, adopting non-legume GM, using GMN to partially substitute mineral N, and applying GM to the soil surface or paddy field mitigated NH3 loss during GM amendment. Additionally, the variation in NH3 volatilization was positively related to soil pH and N application rate (NAR) but had a negative relationship with mean annual precipitation (MAP). This study highlighted the marked effects of green manuring on soil N retention and loss. Agricultural operations that adopt GM amendment should select suitable GM species and optimize mineral N inputs to minimize N loss.

3.
Sci Total Environ ; 918: 170632, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38309333

RESUMEN

Diversified cropping systems, such as intercropping, have shown multifunctionality in agronomic productivity promotion, pest control, and soil health improvement. However, the intense interaction between crop species stimulates soil carbon and nitrogen turnover, and intercropping systems cause inexplicit effects on soil greenhouse gas emissions (GHG). Therefore, a comprehensive meta-analysis using 52 published articles (531 paired observations) was conducted to elucidate the effects of intercropping on soil N2O, CO2, and CH4 emissions under different environmental conditions and field practices to identify the primary driving factors, such as climate, soil and field practices. The results showed that intercropping treatment had a non-significant impact on the three GHG emissions on average. However, using a cereal-legume intercropping regime, adopting moderate N application rate or intercropping in alkaline soils could significantly mitigate soil N2O emission. Additionally, intercropping in soils with high soil organic carbon reduce soil CH4 emission. On the contrary, increasing intercropping duration, or adopted in soils with moderate soil total N tended to stimulate CO2 emission. The mixed-effect model selection indicated that initial soil pH, MAP, MAT, tillage regime, and intercropping duration and type were significant moderators in regulating soil GHG emissions. Our findings explicitly elucidated soil GHG responses to intercropping practice. Further studies are warranted on the evaluation of long-term intercropping effects to improve the comprehensive understanding of C and N balance and global warming potential under intercropping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA