Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biomed Chromatogr ; 34(12): e4903, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32428305

RESUMEN

We present a simple and robust LC-MS/MS assay for the simultaneous quantitation of an antibody cocktail of trastuzumab and pertuzumab in monkey serum. The LC-MS/MS method saved costs, decreased the analysis time, and reduced quantitative times relative to the traditional ligand-binding assays. The serum samples were digested with trypsin at 50°C for 60 min after methanol precipitation, ammonium bicarbonate denaturation, dithiothreitol reduction, and iodoacetamide alkylation. The tryptic peptides were chromatographically separated using a C18 column (2.1 × 50 mm, 2.6 µm) with mobile phases of 0.1% formic acid in water and acetonitrile. The other monoclonal antibody, infliximab, was used as internal standards to minimize the variability during sample processing and detection. A unique peptide for each monoclonal antibody was simultaneously quantified using LC-MS/MS in the multiple reaction monitoring mode. Calibration curves were linear from 2.0 to 400 µg/mL. The intra- and inter-assay precision (%CV) was within 8.9 and 7.4% (except 10.4 and 15.1% for lower limit of quantitation), respectively, and the accuracy (%Dev) was within ±13.1%. The other validation parameters were evaluated, and all results met the acceptance criteria of the international guiding principles. Finally, the method was successfully applied to a pharmacokinetics study after a single-dose intravenous drip administration to cynomolgus monkeys.


Asunto(s)
Anticuerpos Monoclonales Humanizados/sangre , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Trastuzumab/sangre , Animales , Anticuerpos Monoclonales Humanizados/farmacocinética , Femenino , Modelos Lineales , Macaca fascicularis , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Trastuzumab/farmacocinética
2.
Biomed Chromatogr ; 34(10): e4921, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32537846

RESUMEN

A simple, fast and high-throughput LC-tandem mass spectrometry method was developed and validated to simultaneously measure liraglutide and insulin degludec in rat plasma. After protein precipitation, plasma samples were subjected to gradient elution using an InertSustain Bio C18 column with 1000/20/1 water/acetonitrile/formic acid (v/v/v) and 1000/1 acetonitrile/formic acid (v/v) as the mobile phase. The method was validated from 1.00 to 500 ng/mL of liraglutide and insulin degludec. Further, the extraction recovery from the plasma was 41.8%-49.2% for liraglutide and 56.5%-69.7% for insulin degludec. Intra- and inter-day precision of liraglutide was 3.5%-9.4% and 8.4%-9.8%, respectively, whereas its accuracy was between -12.6% and -1.3%. Intra- and inter-day precision of insulin degludec was 5.2%-13.6% and 11.8%-19.1%, respectively, showing an accuracy between -3.0% and 9.9%. As a result, the method was successfully applied to a pharmacokinetics study of liraglutide and insulin degludec following a single-dose subcutaneous administration to rats.


Asunto(s)
Cromatografía Liquida/métodos , Insulina de Acción Prolongada/sangre , Liraglutida/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Estabilidad de Medicamentos , Insulina de Acción Prolongada/química , Insulina de Acción Prolongada/farmacocinética , Límite de Detección , Modelos Lineales , Liraglutida/química , Liraglutida/farmacocinética , Ratas , Reproducibilidad de los Resultados
3.
ACS Appl Mater Interfaces ; 16(24): 30622-30635, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38857197

RESUMEN

Mo4/3B2-x nanosheets are newly developed, and 2D transition metal borides (MBene) were reported in 2021, but there is no report on their further applications and modification; hence, this article sheds light on the significance of potential biological prospects for future biomedical applications. Therefore, elucidation of the biocompatibility, biotoxicology, and bioactivity of Mo4/3B2-x nanosheets has been an urgent need to be fulfilled. Nanometabolomics (also referred as nanomaterials-based metabolomics) was first proposed and utilized in our previous work, which specialized in interpreting nanomaterials-induced metabolic reprogramming through aqueous metabolomics and lipidomics approach. Hence, nanometabolomics could be considered as a novel concept combining nanoscience and metabolomics to provide bioinformation on nanomaterials' biomedical applications. In this work, the safe range of concentration (<50 mg/L) with good biosafety toward human umbilical vein endothelial cells (HUVECs) was discovered. The low concentration (5 mg/L) and high concentration (50 mg/L) of Mo4/3B2-x nanosheets were utilized for the in vitro Mo4/3B2-x-cell interaction. Nanometabolomics has elucidated the biological prospective of Mo4/3B2-x nanosheets via monitoring its biocompatibility and metabolic shift of HUVECs. The results revealed that 50 mg/L Mo4/3B2-x nanosheets could lead to a stronger alteration of amino acid metabolism with disturbance of the corresponding amino acid-related pathways (including amino acid metabolism, amino acid degradation, fatty acid biosynthesis, and lipid biosynthesis and metabolism). These interesting results were closely involved with the oxidative stress and production of excess ROS. This work could be regarded as a pathbreaking study on Mo4/3B2-x nanosheets at a biological level, which also designates their further biochemical, medical, and industrial application and development based on nanometabolomics bioinformation.


Asunto(s)
Aminoácidos , Células Endoteliales de la Vena Umbilical Humana , Nanoestructuras , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Nanoestructuras/química , Nanoestructuras/toxicidad , Metabolómica , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Compuestos de Boro/química , Compuestos de Boro/farmacología , Especies Reactivas de Oxígeno/metabolismo , Reprogramación Metabólica
4.
J Mater Chem B ; 12(3): 730-741, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38165726

RESUMEN

Melanoma, the most aggressive and life-threatening form of skin cancer, lacks innovative therapeutic approaches and deeper bioinformation. In this study, we developed a photothermal therapy (PTT) based on Mo2C nanosheets to eliminate melanoma while utilizing integrated metabolomics to investigate the metabolic shift of metabolome combined lipidome during PTT at the molecular level. Our results demonstrated that 1 mg ml-1 Mo2C nanosheets could efficiently convert laser energy into heat with a strong and stable photothermal effect (74 ± 0.9 °C within 7 cycles). Furthermore, Mo2C-based PTT led to a rapid decrease in melanoma volume (from 3.299 to 0 cm2) on the sixth day, indicating the effective elimination of melanoma. Subsequent integrated metabolomics analysis revealed significant changes in aqueous metabolites (including organic acids, amino acids, fatty acids, and amines) and lipid classes (including phospholipids, lysophospholipids, and sphingolipids), suggesting that melanoma caused substantial fluctuations in both metabolome and lipidome, while Mo2C-based PTT helped improve amino acid metabolism-related biological events (such as tryptophan metabolism) impaired by melanoma. These findings suggest that Mo2C nanosheets hold significant potential as an effective therapeutic agent for skin tumors, such as melanoma. Moreover, through exploring multidimensional bioinformation, integrated metabolomics technology provides novel insights for studying the metabolic effects of tumors, monitoring the correction of metabolic abnormalities by Mo2C nanosheet therapy, and evaluating the therapeutic effect on tumors.


Asunto(s)
Melanoma , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Lipidómica , Terapia Fototérmica , Metaboloma , Homeostasis
5.
Front Pharmacol ; 13: 1011608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339561

RESUMEN

The 9-(R)-HODE is an active compound isolated from cortex lycii that showed significant hypoglycemic effects in our previous in vitro study. In this study, 9-(R)-HODE's in vivo hypoglycemic activity and effect on alleviating diabetic complications, together with its molecular mechanism, was investigated using a metabolomics approach. The monitored regulation on dynamic fasting blood glucose, postprandial glucose, body weight, biochemical parameters and histopathological analysis confirmed the hypoglycemic activity and attenuation effect, i.e., renal lesions, of 9-(R)-HODE. Subsequent metabolomic studies indicated that 9-(R)-HODE induced metabolomic alterations primarily by affecting the levels of amino acids, organic acids, alcohols and amines related to amino acid metabolism, glucose metabolism and energy metabolism. By mediating the related metabolism or single molecules related to insulin resistance, e.g., kynurenine, myo-inositol and the branched chain amino acids leucine, isoleucine and valine, 9-(R)-HODE achieved its therapeutic effect. Moreover, the mediation of kynurenine displayed a systematic effect on the liver, kidney, muscle, plasma and faeces. Lipidomic studies revealed that 9-(R)-HODE could reverse the lipid metabolism disorder in diabetic mice mainly by regulating phosphatidylinositols, lysophosphatidylcholines, lysophosphatidylcholines, phosphatidylserine, phosphatidylglycerols, lysophosphatidylglycerols and triglycerides in both tissues and plasma. Treatment with 9-(R)-HODE significantly modified the structure and composition of the gut microbiota. The SCFA-producing bacteria, including Rikenellaceae and Lactobacillaceae at the family level and Ruminiclostridium 6, Ruminococcaceae UCG 014, Mucispirillum, Lactobacillus, Alistipes and Roseburia at the genus level, were increased by 9-(R)-HODE treatment. These results were consistent with the increased SCFA levels in both the colon content and plasma of diabetic mice treated with 9-(R)-HODE. The tissue DESI‒MSI analysis strongly confirmed the validity of the metabolomics approach in illustrating the hypoglycemic and diabetic complications-alleviation effect of 9-(R)-HODE. The significant upregulation of liver glycogen in diabetic mice by 9-(R)-HODE treatment validated the interpretation of the metabolic pathways related to glycogen synthesis in the integrated pathway network. Altogether, 9-(R)-HODE has the potential to be further developed as a promising candidate for the treatment of diabetes.

6.
Front Cell Neurosci ; 16: 1057887, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687525

RESUMEN

Deep brain stimulation (DBS) of the nucleus accumbens (NAc) (NAc-DBS) is an effective solution to refractory obsessive-compulsive disorder (OCD). However, evidence for the neurobiological mechanisms of OCD and the effect of NAc-DBS is still lacking. One hypothesis is that the electrophysiological activities in the NAc are modulated by DBS, and another hypothesis is that the activities of neurotransmitters in the NAc are influenced by DBS. To investigate these potential alterations, rats with quinpirole (QNP)- induced OCD were treated with DBS of the core part of NAc. Then, extracellular spikes (SPK) and local field potentials (LFP) in the NAc were recorded, and the levels of relevant neurotransmitters and related proteins were measured. Analysis of SPK revealed that the firing rate was decreased and the firing pattern was changed after NAc-DBS, and analysis of LFP showed that overall power spectral density (PSD) levels were reduced after NAc-DBS. Additionally, we found that the relative powers of the theta band, alpha band and beta band were increased in OCD status, while the relative powers of the delta band and gamma band were decreased. This pathological pattern of power distribution was reformed by NAc-DBS. Furthermore, we found that the local levels of monoamines [dopamine (DA) and serotonin (5-HT)] and amino acids [glutamate (Glu) and gamma-aminobutyric acid (GABA)] in the NAc were increased in OCD status, and that the expression of the two types of DA receptors in the NAc exhibited an opposite change. These abnormalities could be reversed by NAc-DBS. These findings provide a more comprehensive understanding about the function of the NAc in the pathophysiology of OCD and provide more detailed evidence for the potential effect of NAc-DBS.

7.
Biomaterials ; 287: 121678, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35853361

RESUMEN

Fibromyalgia (FM), the most common cause of chronic musculoskeletal pain in the general public, lacks advanced therapeutic methodology and detailed bioinformation. However, acting as a newly developed and important transition metal carbide or carbonitride, the Mo2C nanozyme has provided a novel iatrotechnique with excellent bioactivity in a cell/animal model, which also exhibits potential prospects for future clinical applications. In addition, high-content and high-throughput integrated metabolomics (including aqueous metabolomics, lipidomics, and desorption electrospray ionization-mass spectrometry imaging) also specializes in qualitative and quantitative analysis of metabolic shifts at the molecular level. In this work, the FM-alleviation effect of Mo2C nanozyme was investigated through integrated metabolomics in a mouse model. An advanced platform combining gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry and bioinformatics was utilized to study the variation in the mouse metabolome and lipidome. The results revealed that Mo2C treatment could effectively enhance energy metabolism-related biological events impaired by FM, leading to homeostasis of oxidative stress and energy metabolism toward the control levels. During this process, Mo2C facilitated the elimination of ROS in plasma and cells and the rehabilitation of mice from oxidative stress and mitochondrial dysfunction. It was believed that such an integrated metabolomics study on the FM-alleviation effect of Mo2C nanozyme could provide another excellent alternative to traditional Mo2C-based research with numerous pieces of bioinformation, further supporting research area innovation, material modification, and clinical application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA