Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biophys J ; 107(12): L45-L48, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25517170

RESUMEN

The release of GDP from GTPases signals the initiation of a GTPase cycle, where the association of GTP triggers conformational changes promoting binding of downstream effector molecules. Studies have implicated the nucleotide-binding G5 loop to be involved in the GDP release mechanism. For example, biophysical studies on both the eukaryotic Gα proteins and the GTPase domain (NFeoB) of prokaryotic FeoB proteins have revealed conformational changes in the G5 loop that accompany nucleotide binding and release. However, it is unclear whether this conformational change in the G5 loop is a prerequisite for GDP release, or, alternatively, the movement is a consequence of release. To gain additional insight into the sequence of events leading to GDP release, we have created a chimeric protein comprised of Escherichia coli NFeoB and the G5 loop from the human Giα1 protein. The protein chimera retains GTPase activity at a similar level to wild-type NFeoB, and structural analyses of the nucleotide-free and GDP-bound proteins show that the G5 loop adopts conformations analogous to that of the human nucleotide-bound Giα1 protein in both states. Interestingly, isothermal titration calorimetry and stopped-flow kinetic analyses reveal uncoupled nucleotide affinity and release rates, supporting a model where G5 loop movement promotes nucleotide release.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Guanosina Difosfato/metabolismo , Secuencia de Aminoácidos , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Guanosina Difosfato/química , Humanos , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
EMBO J ; 28(17): 2677-85, 2009 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-19629046

RESUMEN

G proteins are key molecular switches in the regulation of membrane protein function and signal transduction. The prokaryotic membrane protein FeoB is involved in G protein coupled Fe(2+) transport, and is unique in that the G protein is directly tethered to the membrane domain. Here, we report the structure of the soluble domain of FeoB, including the G protein domain, and its assembly into an unexpected trimer. Comparisons between nucleotide free and liganded structures reveal the closed and open state of a central cytoplasmic pore, respectively. In addition, these data provide the first observation of a conformational switch in the nucleotide-binding G5 motif, defining the structural basis for GDP release. From these results, structural parallels are drawn to eukaryotic G protein coupled membrane processes.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Escherichia coli/química , Proteínas de Unión al GTP/química , Guanosina Difosfato/metabolismo , Hierro/metabolismo , Sitios de Unión , Transporte Biológico , Proteínas de Transporte de Catión/metabolismo , Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al GTP/metabolismo , Guanosina Difosfato/química , Modelos Moleculares , Conformación Proteica , Transducción de Señal
3.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 69(Pt 4): 399-404, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23545645

RESUMEN

FeoB is a transmembrane protein involved in ferrous iron uptake in prokaryotic organisms. FeoB comprises a cytoplasmic soluble domain termed NFeoB and a C-terminal polytopic transmembrane domain. Recent structures of NFeoB have revealed two structural subdomains: a canonical GTPase domain and a five-helix helical domain. The GTPase domain hydrolyses GTP to GDP through a well characterized mechanism, a process which is required for Fe(2+) transport. In contrast, the precise role of the helical domain has not yet been fully determined. Here, the structure of the cytoplasmic domain of FeoB from Gallionella capsiferriformans is reported. Unlike recent structures of NFeoB, the G. capsiferriformans NFeoB structure is highly unusual in that it does not contain a helical domain. The crystal structures of both apo and GDP-bound protein forms a domain-swapped dimer.


Asunto(s)
GTP Fosfohidrolasas/química , Gallionellaceae/enzimología , Proteínas de la Membrana/química , Multimerización de Proteína , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína
4.
J Biol Chem ; 285(19): 14594-602, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20220129

RESUMEN

FeoB is a prokaryotic membrane protein responsible for the import of ferrous iron (Fe(2+)). A defining feature of FeoB is that it includes an N-terminal 30-kDa soluble domain with GTPase activity, which is required for iron transport. However, the low intrinsic GTP hydrolysis rate of this domain appears to be too slow for FeoB either to function as a channel or to possess an active Fe(2+) membrane transport mechanism. Here, we present crystal structures of the soluble domain of FeoB from Streptococcus thermophilus in complex with GDP and with the GTP analogue derivative 2'-(or -3')-O-(N-methylanthraniloyl)-beta,gamma-imidoguanosine 5'-triphosphate (mant-GMPPNP). Unlike recent structures of the G protein domain, the mant-GMPPNP-bound structure shows clearly resolved, active conformations of the critical Switch motifs. Importantly, biochemical analyses demonstrate that the GTPase activity of FeoB is activated by K(+), which leads to a 20-fold acceleration in its hydrolysis rate. Analysis of the structure identified a conserved asparagine residue likely to be involved in K(+) coordination, and mutation of this residue abolished K(+)-dependent activation. We suggest that this, together with a second asparagine residue that we show is critical for the structure of the Switch I loop, allows the prediction of K(+)-dependent activation in G proteins. In addition, the accelerated hydrolysis rate opens up the possibility that FeoB might indeed function as an active transporter.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Hierro/metabolismo , Potasio/farmacología , Streptococcus thermophilus/metabolismo , Proteínas de Transporte de Catión/química , Cristalografía por Rayos X , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína
5.
Methods Mol Biol ; 426: 589-95, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18542892

RESUMEN

Mobile gene cassettes collectively carry a highly diverse pool of novel genes, ostensibly for purposes of microbial adaptation. At the sequence level, putative functions can only be assigned to a minority of carried ORFs due to their inherent novelty. Having established these mobilized genes code for folded and functional proteins, the authors have recently adopted the procedures of structural genomics to efficiently sample their structures, thereby scoping their functional range. This chapter outlines protocols used to produce cassette-associated genes as recombinant proteins in Escherichia coli and crystallization procedures based on the dual screen/pH optimization approach of the SECSG (SouthEast Collaboratory for Structural Genomics). Crystal structures solved to date have defined unique members of enzyme fold classes associated with transport and nucleotide metabolism.


Asunto(s)
Proteínas Bacterianas/química , Escherichia coli/genética , Genoma Bacteriano/genética , Genómica/métodos , Integrones/fisiología , Vibrio/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Clonación Molecular , Cristalografía por Rayos X , Sistemas de Lectura Abierta/genética , Pliegue de Proteína , Vibrio/química
6.
Biosci Rep ; 34(6): e00158, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25374115

RESUMEN

GDP release from GTPases is usually extremely slow and is in general assisted by external factors, such as association with guanine exchange factors or membrane-embedded GPCRs (G protein-coupled receptors), which accelerate the release of GDP by several orders of magnitude. Intrinsic factors can also play a significant role; a single amino acid substitution in one of the guanine nucleotide recognition motifs, G5, results in a drastically altered GDP release rate, indicating that the sequence composition of this motif plays an important role in spontaneous GDP release. In the present study, we used the GTPase domain from EcNFeoB (Escherichia coli FeoB) as a model and applied biochemical and structural approaches to evaluate the role of all the individual residues in the G5 loop. Our study confirms that several of the residues in the G5 motif have an important role in the intrinsic affinity and release of GDP. In particular, a T151A mutant (third residue of the G5 loop) leads to a reduced nucleotide affinity and provokes a drastically accelerated dissociation of GDP.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Proteínas de Escherichia coli/metabolismo , Guanosina Difosfato/metabolismo , Nucleótidos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Calorimetría/métodos , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , GTP Fosfohidrolasas/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Nucleótidos/química , Nucleótidos/genética , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Termodinámica
7.
FEBS J ; 281(9): 2254-65, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24649829

RESUMEN

GTPases (G proteins) hydrolyze the conversion of GTP to GDP and free phosphate, comprising an integral part of prokaryotic and eukaryotic signaling, protein biosynthesis and cell division, as well as membrane transport processes. The G protein cycle is brought to a halt after GTP hydrolysis, and requires the release of GDP before a new cycle can be initiated. For eukaryotic heterotrimeric Gαßγ proteins, the interaction with a membrane-bound G protein-coupled receptor catalyzes the release of GDP from the Gα subunit. Structural and functional studies have implicated one of the nucleotide binding sequence motifs, the G5 motif, as playing an integral part in this release mechanism. Indeed, a Gαs G5 mutant (A366S) was shown to have an accelerated GDP release rate, mimicking a G protein-coupled receptor catalyzed release state. In the present study, we investigate the role of the equivalent residue in the G5 motif (residue A143) in the prokaryotic membrane protein FeoB from Streptococcus thermophilus, which includes an N-terminal soluble G protein domain. The structure of this domain has previously been determined in the apo and GDP-bound states and in the presence of a transition state analogue, revealing conformational changes in the G5 motif. The A143 residue was mutated to a serine and analyzed with respect to changes in GTPase activity, nucleotide release rate, GDP affinity and structural alterations. We conclude that the identity of the residue at this position in the G5 loop plays a key role in the nucleotide release rate by allowing the correct positioning and hydrogen bonding of the nucleotide base.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al GTP/metabolismo , Guanosina Difosfato/metabolismo , Alanina/genética , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , Fluorescencia , Humanos , Hidrólisis , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Serina/genética , Streptococcus thermophilus/metabolismo
8.
Mol Microbiol ; 66(3): 610-21, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17892463

RESUMEN

Mobile gene cassettes collectively contain a highly diverse pool of novel genes that encode many novel adaptive functions. In the non-clinical context, the function of almost all of the encoded proteins remains unknown despite the enormous size of this mobile gene pool. We have been characterizing cassette arrays by taking advantage of the fact that they cluster at discrete sites in chromosomes; even large arrays are thus recoverable in a relatively small number of clones in genomic libraries. In one assembled array of 116 cassettes from the marine bacterium Vibrio sp. DAT722, a putative MazG protein is encoded within the 21st cassette. Because MazG proteins are implicated in a number of cellular processes, including house-cleaning and stress survival, the presence of such a protein in a mobile cassette was noteworthy. Here we solve the crystal structure of this alpha-helical protein, and define both open and closed states of a new variant of the MazG family. Functional assays confirm that the protein is a dNTP pyrophosphohydrolase, with marked preferences for dCTP and dATP. We hypothesize that iMazG acts as a house-cleaning enzyme, preventing the incorporation of damaging non-canonical nucleotides into host-cell DNA.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Integrones/genética , Vibrio/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pirofosfatasas/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Vibrio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA