Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Virol ; 168(3): 96, 2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36842152

RESUMEN

There is an urgent need to understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-host interactions involved in virus spread and pathogenesis, which might contribute to the identification of new therapeutic targets. In this study, we investigated the presence of SARS-CoV-2 in postmortem lung, kidney, and liver samples of patients who died with coronavirus disease (COVID-19) and its relationship with host factors involved in virus spread and pathogenesis, using microscopy-based methods. The cases analyzed showed advanced stages of diffuse acute alveolar damage and fibrosis. We identified the SARS-CoV-2 nucleocapsid (NC) in a variety of cells, colocalizing with mitochondrial proteins, lipid droplets (LDs), and key host proteins that have been implicated in inflammation, tissue repair, and the SARS-CoV-2 life cycle (vimentin, NLRP3, fibronectin, LC3B, DDX3X, and PPARγ), pointing to vimentin and LDs as platforms involved not only in the viral life cycle but also in inflammation and pathogenesis. SARS-CoV-2 isolated from a patient´s nasal swab was grown in cell culture and used to infect hamsters. Target cells identified in human tissue samples included lung epithelial and endothelial cells; lipogenic fibroblast-like cells (FLCs) showing features of lipofibroblasts such as activated PPARγ signaling and LDs; lung FLCs expressing fibronectin and vimentin and macrophages, both with evidence of NLRP3- and IL1ß-induced responses; regulatory cells expressing immune-checkpoint proteins involved in lung repair responses and contributing to inflammatory responses in the lung; CD34+ liver endothelial cells and hepatocytes expressing vimentin; renal interstitial cells; and the juxtaglomerular apparatus. This suggests that SARS-CoV-2 may directly interfere with critical lung, renal, and liver functions involved in COVID-19-pathogenesis.


Asunto(s)
COVID-19 , Humanos , COVID-19/patología , Fibronectinas , Vimentina , SARS-CoV-2 , Células Endoteliales , Proteína con Dominio Pirina 3 de la Familia NLR , PPAR gamma , Pulmón , Inflamación/patología , Riñón , Hígado
2.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37373317

RESUMEN

An impaired healing response underlies diabetic foot wound chronicity, frequently translating to amputation, disability, and mortality. Diabetics suffer from underappreciated episodes of post-epithelization ulcer recurrence. Recurrence epidemiological data are alarmingly high, so the ulcer is considered in "remission" and not healed from the time it remains epithelialized. Recurrence may result from the combined effects of behavioral and endogenous biological factors. Although the damaging role of behavioral, clinical predisposing factors is undebatable, it still remains elusive in the identification of endogenous biological culprits that may prime the residual scar tissue for recurrence. Furthermore, the event of ulcer recurrence still waits for the identification of a molecular predictor. We propose that ulcer recurrence is deeply impinged by chronic hyperglycemia and its downstream biological effectors, which originate epigenetic drivers that enforce abnormal pathologic phenotypes to dermal fibroblasts and keratinocytes as memory cells. Hyperglycemia-derived cytotoxic reactants accumulate and modify dermal proteins, reduce scar tissue mechanical tolerance, and disrupt fibroblast-secretory activity. Accordingly, the combination of epigenetic and local and systemic cytotoxic signalers induce the onset of "at-risk phenotypes" such as premature skin cell aging, dysmetabolism, inflammatory, pro-degradative, and oxidative programs that may ultimately converge to scar cell demise. Post-epithelialization recurrence rate data are missing in clinical studies of reputed ulcer healing therapies during follow-up periods. Intra-ulcer infiltration of epidermal growth factor exhibits the most consistent remission data with the lowest recurrences during 12-month follow-up. Recurrence data should be regarded as a valuable clinical endpoint during the investigational period for each emergent healing candidate.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Hiperglucemia , Humanos , Cicatriz/patología , Úlcera/patología , Pie Diabético/patología , Extremidad Inferior/patología , Hiperglucemia/patología , Recurrencia , Diabetes Mellitus/patología
3.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163435

RESUMEN

Lower-extremity arterial disease is a major health problem with increasing prevalence, often leading to non-traumatic amputation, disability and mortality. The molecular mechanisms underpinning abnormal vascular wall remodeling are not fully understood. We hypothesized on the existence of a vascular tissue memory that may be transmitted through soluble signaling messengers, transferred from humans to healthy recipient animals, and consequently drive the recapitulation of arterial wall thickening and other vascular pathologies. We examined the effects of the intralesional infiltration for 6 days of arteriosclerotic popliteal artery-derived homogenates (100 µg of protein) into rats' full-thickness wounds granulation tissue. Animals infiltrated with normal saline solution or healthy brachial arterial tissue homogenate obtained from traumatic amputation served as controls. The significant thickening of arteriolar walls was the constant outcome in two independent experiments for animals receiving arteriosclerotic tissue homogenates. This material induced other vascular morphological changes including an endothelial cell phenotypic reprogramming that mirrored the donor's vascular histopathology. The immunohistochemical expression pattern of relevant vascular markers appeared to match between the human tissue and the corresponding recipient rats. These changes occurred within days of administration, and with no cross-species limitation. The identification of these "vascular disease drivers" may pave novel research avenues for atherosclerosis pathobiology.


Asunto(s)
Arteriosclerosis/metabolismo , Tejido de Granulación/metabolismo , Arteria Poplítea/lesiones , Proteínas/administración & dosificación , Lesiones del Sistema Vascular/inducido químicamente , Anciano , Animales , Arteriosclerosis/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Lesiones del Sistema Vascular/patología
4.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232877

RESUMEN

Cellular memory is a controversial concept representing the ability of cells to "write and memorize" stressful experiences via epigenetic operators. The progressive course of chronic, non-communicable diseases such as type 2 diabetes mellitus, cancer, and arteriosclerosis, is likely driven through an abnormal epigenetic reprogramming, fostering the hypothesis of a cellular pathologic memory. Accordingly, cultured diabetic and cancer patient-derived cells recall behavioral traits as when in the donor's organism irrespective to culture time and conditions. Here, we analyze the data of studies conducted by our group and led by a cascade of hypothesis, in which we aimed to validate the hypothetical existence and transmissibility of a cellular pathologic memory in diabetes, arteriosclerotic peripheral arterial disease, and cancer. These experiments were based on the administration to otherwise healthy animals of cell-free filtrates prepared from human pathologic tissue samples representative of each disease condition. The administration of each pathologic tissue homogenate consistently induced the faithful recapitulation of: (1) Diabetic archetypical changes in cutaneous arterioles and nerves. (2) Non-thrombotic arteriosclerotic thickening, collagenous arterial encroachment, aberrant angiogenesis, and vascular remodeling. (3) Pre-malignant and malignant epithelial and mesenchymal tumors in different organs; all evocative of the donor's tissue histopathology and with no barriers for interspecies transmission. We hypothesize that homogenates contain pathologic tissue memory codes represented in soluble drivers that "infiltrate" host's animal cells, and ultimately impose their phenotypic signatures. The identification and validation of the actors in behind may pave the way for future therapies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad Arterial Periférica , Animales , Humanos , Neovascularización Patológica
5.
Int Wound J ; 16(6): 1294-1303, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31429187

RESUMEN

Diabetic foot ulcer is one of the most frightened diabetic complications leading to amputation disability and early mortality. Diabetic wounds exhibit a complex networking of inflammatory cytokines, local proteases, and reactive oxygen and nitrogen species as a pathogenic polymicrobial biofilm, overall contributing to wound chronification and host homeostasis imbalance. Intralesional infiltration of epidermal growth factor (EGF) has emerged as a therapeutic alternative to diabetic wound healing, reaching responsive cells while avoiding the deleterious effect of proteases and the biofilm on the wound's surface. The present study shows that intralesional therapy with EGF is associated with the systemic attenuation of pro-inflammatory markers along with redox balance recovery. A total of 11 diabetic patients with neuropathic foot ulcers were studied before and 3 weeks after starting EGF treatment. Evaluations comprised plasma levels of pro-inflammatory, redox balance, and glycation markers. Pro-inflammatory markers such as erythrosedimentation rate, C-reactive protein, interleukin-6, soluble FAS, and macrophage inflammatory protein 1-alpha were significantly reduced by EGF therapy. Oxidative capacity, nitrite/nitrate ratio, and pentosidine were also reduced, while soluble receptor for advanced glycation end-products significantly increased. Overall, our results indicate that the local intralesional infiltration of EGF translates in systemic anti-inflammatory and antioxidant effects, as in attenuation of the glycation products' negative effects.


Asunto(s)
Pie Diabético/tratamiento farmacológico , Factor de Crecimiento Epidérmico/uso terapéutico , Proteínas Recombinantes/uso terapéutico , Anciano , Arginina/análogos & derivados , Arginina/sangre , Biomarcadores/sangre , Sedimentación Sanguínea , Proteína C-Reactiva/análisis , Quimiocina CCL3/sangre , Citocinas/sangre , Femenino , Humanos , Inyecciones Intralesiones , Lisina/análogos & derivados , Lisina/sangre , Masculino , Persona de Mediana Edad , Nitratos/sangre , Nitritos/sangre , Receptor para Productos Finales de Glicación Avanzada/sangre , Cicatrización de Heridas , Receptor fas/sangre
6.
BMC Musculoskelet Disord ; 16: 51, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25879761

RESUMEN

BACKGROUND: Pro-inflammatory cytokines are directly implicated in the pathogenesis of Rheumatoid arthritis (RA). Variable clinical response to cytokine targeted therapies as TNFalpha and IL-6, strongly highlights the heterogeneity of inflammatory process in RA. Another cytokine, IL-15 has also been related to the inflammatory process in RA. Recently we described for the first time, the presence of its specific receptor, IL-15Ralpha, in synovial fluid (SF). The aim of this work was to compare the expression profile of IL-15Ralpha, its ligand IL-15, TNFalpha and IL-6 and how these cytokines are correlated in SF from RA patients taking as a reference Osteoarthritis (OA), an articular but not autoimmune disease. METHODS: Synovial fluids were obtained from the knee joints of 60 patients, 30 with confirmed diagnosis of RA and 30 with OA diagnosis. The levels of TNFalpha, IL-6, IL-15 and IL-15Ralpha were measured by ELISA. A statistical analysis was performed with GraphPad Prism v5.0 using the Mann-Whitney U test and Spearman's rank correlation. A cluster analysis was run in MeV software v4.9.0 and differences across clusters were evaluated by an ANOVA including post-test analysis. RESULTS: We found higher and significant levels of TNFalpha, IL-6 and IL-15Ralpha but not of IL-15 in RA compared with the OA group. Additionally, a high inter-individual variability in the levels of these 4 cytokines was observed in RA, although we identified 4 patients' subgroups by cluster analysis of cytokines concentration in SF. We also found a positive correlation between IL-15Ralpha-IL-6 and IL-15Ralpha-IL-15, but not for other pairs of cytokines in RA. In addition we found correlation between the value of IL-15Ralpha in SF and disease activity score, DAS28. CONCLUSIONS: In our current work we found a high inter-individual variability in the levels of TNFalpha, IL-6, IL-15 and IL-15Ralpha in SF of RA patients and were identified four principal clusters of cytokines concentration in SF, suggesting the importance of identifying disease subset of patients for personalized treatment. Finally, we found a correlation between IL-15Ralpha-IL-6, IL-15Ralpha-IL-15, but we did not find any correlation between other pairs of studied cytokines in SF.


Asunto(s)
Artritis Reumatoide/inmunología , Mediadores de Inflamación/análisis , Interleucina-15/análisis , Interleucina-6/análisis , Articulación de la Rodilla/inmunología , Receptores de Interleucina-15/análisis , Líquido Sinovial/inmunología , Factor de Necrosis Tumoral alfa/análisis , Adulto , Anciano , Artritis Reumatoide/diagnóstico , Biomarcadores/análisis , Estudios de Casos y Controles , Análisis por Conglomerados , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/diagnóstico , Osteoartritis de la Rodilla/inmunología
7.
J Interferon Cytokine Res ; 44(6): 271-280, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597374

RESUMEN

The recombinant human interferon alpha-2b (IFN-α2b) nasal drop formulation (Nasalferon) was studied as prophylaxis for SARS-CoV-2. Healthy volunteers between 19 and 80 years of age received 0.5 million international units of IFN in one drop (0.05 mL ) in each nostril, twice a day, for 10 consecutive days. The nondetection of SARS-CoV-2 by real-time polymerase chain reaction was the primary outcome variable. Several IFN-α biomarkers, including intranasal gene expression and innate immune effector activity, were increased in participants who received intranasal IFN-α2b. The study included 2,930 international travelers and 5,728 persons who were their close contacts. The subjects were treated with Nasalferon in January 2021, and 9,162 untreated travelers were included as controls. COVID-19 rate in treated subjects was significantly lower than in untreated subjects (0.05% vs. 4.84%). The proportion of travelers with COVID-19 decreased from 60.9% to 2.2% between December 2020 and February 2021. Furthermore, 1,719 tourism workers also received Nasalferon, and no cases of SARS-CoV-2 infection were detected, whereas 39 COVID-19 cases (10.6%) were reported in 367 untreated subjects. The main adverse events associated with the use of intranasal IFN-α2b were nasal congestion, headache, and rhinorrhea. Our prophylactic health interventions study demonstrates that the daily administration of Nasalferon for 10 days decreases the risk of developing COVID-19 in healthy volunteers. [Figure: see text].


Asunto(s)
Administración Intranasal , COVID-19 , Interferón alfa-2 , SARS-CoV-2 , Humanos , Persona de Mediana Edad , Adulto , Masculino , Femenino , COVID-19/prevención & control , COVID-19/virología , Anciano , SARS-CoV-2/inmunología , SARS-CoV-2/efectos de los fármacos , Interferón alfa-2/administración & dosificación , Anciano de 80 o más Años , Antivirales/administración & dosificación , Antivirales/uso terapéutico , Adulto Joven , Tratamiento Farmacológico de COVID-19 , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/uso terapéutico
8.
Front Pharmacol ; 15: 1402138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873418

RESUMEN

Introduction: Dilated cardiomyopathy (DCM) is a fatal myocardial condition with ventricular structural changes and functional deficits, leading to systolic dysfunction and heart failure (HF). DCM is a frequent complication in oncologic patients receiving Doxorubicin (Dox). Dox is a highly cardiotoxic drug, whereas its damaging spectrum affects most of the organs by multiple pathogenic cascades. Experimentally reproduced DCM/HF through Dox administrations has shed light on the pathogenic drivers of cardiotoxicity. Growth hormone (GH) releasing peptide 6 (GHRP-6) is a GH secretagogue with expanding and promising cardioprotective pharmacological properties. Here we examined whether GHRP-6 administration concomitant to Dox prevented the onset of DCM/HF and multiple organs damages in otherwise healthy rats. Methods: Myocardial changes were sequentially evaluated by transthoracic echocardiography. Autopsy was conducted at the end of the administration period when ventricular dilation was established. Semiquantitative histopathologic study included heart and other internal organs samples. Myocardial tissue fragments were also addressed for electron microscopy study, and characterization of the transcriptional expression ratio between Bcl-2 and Bax. Serum samples were destined for REDOX system balance assessment. Results and discussion: GHRP-6 administration in parallel to Dox prevented myocardial fibers consumption and ventricular dilation, accounting for an effective preservation of the LV systolic function. GHRP-6 also attenuated extracardiac toxicity preserving epithelial organs integrity, inhibiting interstitial fibrosis, and ultimately reducing morbidity and mortality. Mechanistically, GHRP-6 proved to sustain cellular antioxidant defense, upregulate prosurvival gene Bcl-2, and preserve cardiomyocyte mitochondrial integrity. These evidences contribute to pave potential avenues for the clinical use of GHRP-6 in Dox-treated subjects.

9.
Front Mol Biosci ; 11: 1361377, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698774

RESUMEN

Cancer remains a worldwide cause of morbidity and mortality. Investigational research efforts have included the administration of tumor-derived extracts to healthy animals. Having previously demonstrated that the administration of non-transmissible, human cancer-derived homogenates induced malignant tumors in mice, here, we examined the consequences of administering 50 or 100 µg of protein of crude homogenates from mammary carcinoma, pancreatic adenocarcinoma, and melanoma samples in 6 inoculations per week during 2 months. The concurrent control mice received homogenates of healthy donor-skin cosmetic surgery fragments. Mammary carcinoma homogenate administration did not provoke the deterioration or mortality of the animals. Multiple foci of lung adenocarcinomas with a broad expression of malignity histomarkers coexisting with small cell-like carcinomas were found. Disseminated cells, positive to classic epithelial markers, were detected in lymphoid nodes. The administration of pancreatic tumor and melanoma homogenates progressively deteriorated animal health. Pancreatic tumor induced poorly differentiated lung adenocarcinomas and pancreatic islet hyperplasia. Melanoma affected lungs with solid pseudopapillary adenocarcinomas. Giant atypical hepatocytes were also observed. The kidney exhibited dispersed foci of neoplastic cells within a desmoplastic matrix. Nuclear overlapping with hyperchromatic nuclei, mitotic figures, and prominent nuclear atypia was identified in epidermal cells. None of these changes were ever detected in the control mice. Furthermore, the incubation of zebrafish embryos with breast tumor homogenates induced the expression of c-Myc and HER-2 as tumor markers, contrasting to embryos exposed to healthy tissue-derived material. This study confirms and extends our hypothesis that tumor homogenates contain and may act as vectors for "malignancy drivers," which ultimately implement a carcinogenesis process in otherwise healthy mice.

10.
Viruses ; 16(3)2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38543783

RESUMEN

Despite the rapid development of vaccines against COVID-19, they have important limitations, such as safety issues, the scope of their efficacy, and the induction of mucosal immunity. The present study proposes a potential component for a new generation of vaccines. The recombinant nucleocapsid (N) protein from the SARS-CoV-2 Delta variant was combined with the ODN-39M, a synthetic 39 mer unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN), used as an adjuvant. The evaluation of its immunogenicity in Balb/C mice revealed that only administration by intranasal route induced a systemic cross-reactive, cell-mediated immunity (CMI). In turn, this combination was able to induce anti-N IgA in the lungs, which, along with the specific IgG in sera and CMI in the spleen, was cross-reactive against the nucleocapsid protein of SARS-CoV-1. Furthermore, the nasal administration of the N + ODN-39M preparation, combined with RBD Delta protein, enhanced the local and systemic immune response against RBD, with a neutralizing capacity. Results make the N + ODN-39M preparation a suitable component for a future intranasal vaccine with broader functionality against Sarbecoviruses.


Asunto(s)
COVID-19 , Vacunas , Animales , Ratones , Humanos , Administración Intranasal , Proteínas de la Nucleocápside , Vacunas Combinadas , SARS-CoV-2/genética , Vacunas contra la COVID-19 , COVID-19/prevención & control , Inmunidad Mucosa , Adyuvantes Inmunológicos , Anticuerpos Antivirales , Anticuerpos Neutralizantes
11.
Front Neurol ; 15: 1303402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638315

RESUMEN

Objective: This study tested the hypothesis that a neuroprotective combined therapy based on epidermal growth factor (EGF) and growth hormone-releasing hexapeptide (GHRP6) could be safe for acute ischemic stroke patients, admitting up to 30% of serious adverse events (SAE) with proven causality. Methods: A multi-centric, randomized, open-label, controlled, phase I-II clinical trial with parallel groups was conducted (July 2017 to January 2018). Patients aged 18-80 years with a computed tomography-confirmed ischemic stroke and less than 12 h from the onset of symptoms were randomly assigned to the study groups I (75 µg rEGF + 3.5 mg GHRP6 i.v., n=10), II (75 µg rEGF + 5 mg GHRP6 i.v., n=10), or III (standard care control, n=16). Combined therapy was given BID for 7 days. The primary endpoint was safety over 6 months. Secondary endpoints included neurological (NIHSS) and functional [Barthel index and modified Rankin scale (mRS)] outcomes. Results: The study population had a mean age of 66 ± 11 years, with 21 men (58.3%), a baseline median NIHSS score of 9 (95% CI: 8-11), and a mean time to treatment of 7.3 ± 2.8 h. Analyses were conducted on an intention-to-treat basis. SAEs were reported in 9 of 16 (56.2%) patients in the control group, 3 of 10 (30%) patients in Group I (odds ratio (OR): 0.33; 95% CI: 0.06-1.78), and 2 of 10 (20%) patients in Group II (OR: 0.19; 95% CI: 0.03-1.22); only two events in one patient in Group I were attributed to the intervention treatment. Compliance with the study hypothesis was greater than 0.90 in each group. Patients treated with EGF + GHRP6 had a favorable neurological and functional evolution at both 90 and 180 days, as evidenced by the inferential analysis of NIHSS, Barthel, and mRS and by their moderate to strong effect size. At 6 months, proportion analysis evidenced a higher survival rate for patients treated with the combined therapy. Ancillary analysis including merged treated groups and utility-weighted mRS also showed a benefit of this combined therapy. Conclusion: EGF + GHRP6 therapy was safe. The functional benefits of treatment in this study supported a Phase III study. Clinical Trial Registration: RPCEC00000214 of the Cuban Public Registry of Clinical Trials, Unique identifier: IG/CIGB-845I/IC/1601.

12.
DNA Cell Biol ; 43(2): 95-102, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38118108

RESUMEN

HeberNasvac, a therapeutic vaccine for chronic hepatitis B, is able to safely stimulate multiple Toll-like receptors, increasing antigen presentation in vitro and in a phase II clinical trial (Profira) in elderly volunteers who were household contacts of respiratory infection patients. Thus, a new indication as a postexposure prophylaxis or early therapy for respiratory infections has been proposed. In this study, we evaluated the expression of several interferon-stimulated genes (ISGs) after mucosal administration of HeberNasvac and compared this effect with the nasal delivery of interferon alpha 2b (Nasalferon). Molecular studies of blood samples of 50 subjects from the Profira clinical trial who were locally treated with HeberNasvac or Nasalferon and concurrent untreated individuals were compared based on their relative mRNA expression of OAS1, ISG15, ISG20, STAT1, STAT3, and DRB1-HLA II genes. In most cases, the gene expression induced by HeberNasvac was similar in profile and intensity to the expression induced by Nasalferon and significantly superior to that observed in untreated controls. The immune stimulatory effect of HeberNasvac on ISGs paved the way for its future use as an innate immunity stimulator in elderly persons and immunocompromised subjects or as part of Mambisa, a nasal vaccine to prevent severe acute respiratory syndrome coronavirus 2 infection.


Asunto(s)
Pandemias , Vacunas , Humanos , Anciano , Inmunidad Innata/genética , Vacunas/farmacología
13.
Front Immunol ; 14: 1162739, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187739

RESUMEN

Cytokines are secretion proteins that mediate and regulate immunity and inflammation. They are crucial in the progress of acute inflammatory diseases and autoimmunity. In fact, the inhibition of proinflammatory cytokines has been widely tested in the treatment of rheumatoid arthritis (RA). Some of these inhibitors have been used in the treatment of COVID-19 patients to improve survival rates. However, controlling the extent of inflammation with cytokine inhibitors is still a challenge because these molecules are redundant and pleiotropic. Here we review a novel therapeutic approach based on the use of the HSP60-derived Altered Peptide Ligand (APL) designed for RA and repositioned for the treatment of COVID-19 patients with hyperinflammation. HSP60 is a molecular chaperone found in all cells. It is involved in a wide diversity of cellular events including protein folding and trafficking. HSP60 concentration increases during cellular stress, for example inflammation. This protein has a dual role in immunity. Some HSP60-derived soluble epitopes induce inflammation, while others are immunoregulatory. Our HSP60-derived APL decreases the concentration of cytokines and induces the increase of FOXP3+ regulatory T cells (Treg) in various experimental systems. Furthermore, it decreases several cytokines and soluble mediators that are raised in RA, as well as decreases the excessive inflammatory response induced by SARS-CoV-2. This approach can be extended to other inflammatory diseases.


Asunto(s)
Artritis Reumatoide , Chaperonina 60 , Humanos , COVID-19 , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Péptidos/farmacología , Péptidos/uso terapéutico , SARS-CoV-2/metabolismo , Chaperonina 60/farmacología , Chaperonina 60/uso terapéutico
14.
PLoS One ; 18(2): e0281111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730325

RESUMEN

This paper presents the results of an observational and retrospective study on the therapeutic effects of Jusvinza, an immunomodulatory peptide with anti-inflammatory properties for critically ill COVID-19 patients. This peptide induces regulatory mechanisms on the immune response in experimental systems and in patients with Rheumatoid Arthritis. Exploratory research in COVID-19 patients revealed that Jusvinza promotes clinical and radiological improvement. The aim of this study is to describe the clinical outcome and variations of several inflammatory biomarkers in a cohort of critically ill COVID-19 patients, divided into two groups during the observational research: one group received Jusvinza and the other did not. Research physicians extracted the patients´ data from their hospital's clinical records. The study analyzed 345 medical records, and 249 records from critically ill patients were included. The data covered the demographic characteristics, vital signs, ventilatory parameters and inflammatory biomarkers. Survival outcome was significantly higher in the group receiving Jusvinza (90.4%) compared to the group without Jusvinza (39.5%). Furthermore, in patients treated with Jusvinza there was a significant improvement in ventilatory parameters and a reduction in inflammation and coagulation biomarkers. Our findings show that Jusvinza could control the extent of inflammation in COVID-19 patients. This study indicates that Jusvinza is a helpful drug for the treatment of diseases characterized by hyperinflammation.


Asunto(s)
COVID-19 , Humanos , Chaperonina 60 , Estudios Retrospectivos , SARS-CoV-2 , Enfermedad Crítica/terapia , Inflamación , Biomarcadores , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
15.
J Interferon Cytokine Res ; 43(12): 571-580, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048299

RESUMEN

The convergence of life sciences with neurosciences, nanotechnology, data management, and engineering has caused a technological diversification of the biotechnology, pharmaceutical, and medical technology industries, including the phenomenon of digital transformation, which has given rise to the so-called Fourth Industrial Revolution (Industry 4.0). Confronting the COVID-19 pandemic revealed the outstanding response capacity of the scientific community and the biopharmaceutical industry, based on a multidisciplinary and interinstitutional approach that has achieved an unprecedented integration in the history of biomedical science. Cuba, a small country, with scarce material resources, has had remarkable success in controlling the disease, which also highlights the impact of social factors. This report presents a summary of the most relevant presentations of selected topics during the scientific meeting, "BioHabana 2022: Cancer Immunotherapy and the COVID-19 Pandemic," which was held in Havana Cuba in April 2022.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Cuba , Pandemias/prevención & control , Neoplasias/prevención & control , Inmunoterapia
17.
Front Immunol ; 14: 1227268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936684

RESUMEN

Introduction: The antinociceptive and pharmacological activities of C-Phycocyanin (C-PC) and Phycocyanobilin (PCB) in the context of inflammatory arthritis remain unexplored so far. In the present study, we aimed to assess the protective actions of these compounds in an experimental mice model that replicates key aspects of human rheumatoid arthritis. Methods: Antigen-induced arthritis (AIA) was established by intradermal injection of methylated bovine serum albumin in C57BL/6 mice, and one hour before the antigen challenge, either C-PC (2, 4, or 8 mg/kg) or PCB (0.1 or 1 mg/kg) were administered intraperitoneally. Proteome profiling was also conducted on glutamate-exposed SH-SY5Y neuronal cells to evaluate the PCB impact on this key signaling pathway associated with nociceptive neuronal sensitization. Results and discussion: C-PC and PCB notably ameliorated hypernociception, synovial neutrophil infiltration, myeloperoxidase activity, and the periarticular cytokine concentration of IFN-γ, TNF-α, IL-17A, and IL-4 dose-dependently in AIA mice. In addition, 1 mg/kg PCB downregulated the gene expression for T-bet, RORγ, and IFN-γ in the popliteal lymph nodes, accompanied by a significant reduction in the pathological arthritic index of AIA mice. Noteworthy, neuronal proteome analysis revealed that PCB modulated biological processes such as pain, inflammation, and glutamatergic transmission, all of which are involved in arthritic pathology. Conclusions: These findings demonstrate the remarkable efficacy of PCB in alleviating the nociception and inflammation in the AIA mice model and shed new light on mechanisms underlying the PCB modulation of the neuronal proteome. This research work opens a new avenue to explore the translational potential of PCB in developing a therapeutic strategy for inflammation and pain in rheumatoid arthritis.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Neuroblastoma , Humanos , Ratones , Animales , Ficocianina/efectos adversos , Nocicepción , Proteoma , Infiltración Neutrófila , Ratones Endogámicos C57BL , Artritis Reumatoide/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Expresión Génica , Citocinas/farmacología , Dolor
18.
MEDICC Rev ; 24(1): 44-58, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-34653116

RESUMEN

BACKGROUND: Diabetic foot ulcers are a common diabetic complication leading to alarming figures of amputation, disability, and early mortality. The diabetic glucooxidative environment impairs the healing response, promoting the onset of a 'wound chronicity phenotype'. In 50% of ulcers, these non-healing wounds act as an open door for developing infections, a process facilitated by diabetic patients' dysimmunity. Infection can elicit biofilm formation that worsens wound prognosis. How this microorganism community is able to take advantage of underlying diabetic conditions and thrive both within the wound and the diabetic host is an expanding research field. OBJECTIVES: 1) Offer an overview of the major cellular and molecular derangements of the diabetic healing process versus physiological cascades in a non-diabetic host. 2) Describe the main immunopathological aspects of diabetics' immune response and explore how these contribute to wound infection susceptibility. 3) Conceptualize infection and biofilim in diabetic foot ulcers and analyze their dynamic interactions with wound bed cells and matrices, and their systemic effects at the organism level. 4) Offer an integrative conceptual framework of wound-dysimmunity-infection-organism damage. EVIDENCE AQUISITION: We retrieved 683 articles indexed in Medline/PubMed, SciELO, Bioline International and Google Scholar. 280 articles were selected for discussion under four major subheadings: 1) normal healing processes, 2) impaired healing processes in the diabetic population, 3) diabetic dysimmunity and 4) diabetic foot infection and its interaction with the host. DEVELOPMENT: The diabetic healing response is heterogeneous, torpid and asynchronous, leading to wound chronicity. The accumulation of senescent cells and a protracted inflammatory profile with a pro-catabolic balance hinder the proliferative response and delay re-epithelialization. Diabetes reduces the immune system's abilities to orchestrate an appropriate antimicrobial response and offers ideal conditions for microbiota establishment and biofilm formation. Biofilm-microbial entrenchment hinders antimicrobial therapy effectiveness, amplifies the host's pre-existing immunodepression, arrests the wound's proliferative phase, increases localized catabolism, prolongs pathogenic inflammation and perpetuates wound chronicity. In such circumstances the infected wound may act as a proinflammatory and pro-oxidant organ superimposed onto the host, which eventually intensifies peripheral insulin resistance and disrupts homeostasis. CONCLUSIONS: The number of lower-limb amputations remains high worldwide despite continued research efforts on diabetic foot ulcers. Identifying and manipulating the molecular drivers underlying diabetic wound healing failure, and dysimmunity-driven susceptibility to infection will offer more effective therapeutic tools for the diabetic population.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Antibacterianos/uso terapéutico , Cuba , Pie Diabético/tratamiento farmacológico , Humanos , Cicatrización de Heridas
19.
Front Aging Neurosci ; 14: 683689, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360215

RESUMEN

Background: Because of high prevalence of Alzheimer's disease (AD) in low- and middle-income countries (LMICs), there is an urgent need for inexpensive and minimally invasive diagnostic tests to detect biomarkers in the earliest and asymptomatic stages of the disease. Blood-based biomarkers are predicted to have the most impact for use as a screening tool and predict the onset of AD, especially in LMICs. Furthermore, it has been suggested that panels of markers may perform better than single protein candidates. Methods: Medline/Pubmed was searched to identify current relevant studies published from January 2016 to December 2020. We included all full-text articles examining blood-based biomarkers as a set of protein markers or panels to aid in AD's early diagnosis, prognosis, and characterization. Results: Seventy-six articles met the inclusion criteria for systematic review. Majority of the studies reported plasma and serum as the main source for biomarker determination in blood. Protein-based biomarker panels were reported to aid in AD diagnosis and prognosis with better accuracy than individual biomarkers. Conventional (amyloid-beta and tau) and neuroinflammatory biomarkers, such as amyloid beta-42, amyloid beta-40, total tau, phosphorylated tau-181, and other tau isoforms, were the most represented. We found the combination of amyloid beta-42/amyloid beta-40 ratio and APOEε4 status to be most represented with high accuracy for predicting amyloid beta-positron emission tomography status. Conclusion: Assessment of Alzheimer's disease biomarkers in blood as a non-invasive and cost-effective alternative will potentially contribute to early diagnosis and improvement of therapeutic interventions. Given the heterogeneous nature of AD, combination of markers seems to perform better in the diagnosis and prognosis of the disease than individual biomarkers.

20.
Front Immunol ; 13: 1036200, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405721

RESUMEN

Cytokines, demyelination and neuroaxonal degeneration in the central nervous system are pivotal elements implicated in the pathogenesis of multiple sclerosis (MS) and its nonclinical model of experimental autoimmune encephalomyelitis (EAE). Phycocyanobilin (PCB), a chromophore of the biliprotein C-Phycocyanin (C-PC) from Spirulina platensis, has antioxidant, immunoregulatory and anti-inflammatory effects in this disease, and it could complement the effect of other Disease Modifying Treatments (DMT), such as Interferon-ß (IFN-ß). Here, our main goal was to evaluate the potential PCB benefits and its mechanisms of action to counteract the chronic EAE in mice. MOG35-55-induced EAE was implemented in C57BL/6 female mice. Clinical signs, pro-inflammatory cytokines levels by ELISA, qPCR in the brain and immunohistochemistry using precursor/mature oligodendrocytes cells antibodies in the spinal cord, were assessed. PCB enhanced the neurological condition, and waned the brain concentrations of IL-17A and IL-6, pro-inflammatory cytokines, in a dose-dependent manner. A down- or up-regulating activity of PCB at 1 mg/kg was identified in the brain on three (LINGO1, NOTCH1, and TNF-α), and five genes (MAL, CXCL12, MOG, OLIG1, and NKX2-2), respectively. Interestingly, a reduction of demyelination, active microglia/macrophages density, and axonal damage was detected along with an increase in oligodendrocyte precursor cells and mature oligodendrocytes, when assessed the spinal cords of EAE mice that took up PCB. The studies in vitro in rodent encephalitogenic T cells and in vivo in the EAE mouse model with the PCB/IFN-ß combination, showed an enhanced positive effect of this combined therapy. Overall, these results demonstrate the anti-inflammatory activity and the protective properties of PCB on the myelin and support its use with IFN-ß as an improved DMT combination for MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Femenino , Animales , Ratones , Ficocianina/efectos adversos , Esclerosis Múltiple/tratamiento farmacológico , Ratones Endogámicos C57BL , Antiinflamatorios/efectos adversos , Modelos Animales de Enfermedad , Citocinas/uso terapéutico , Interferón beta/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA