Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Phys Chem Chem Phys ; 21(47): 26017-26026, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31580349

RESUMEN

Methyl isocyanide, CH3NC, is a key compound in astrochemistry and astrobiology. A combined theoretical and experimental investigation of the single photon ionization of gas phase methyl isocyanide and its fragmentation pathways is presented. Vacuum ultraviolet (VUV) synchrotron radiation based experiments are used to measure the threshold photoelectron photoion coincidence (TPEPICO) spectra between 10.6 and 15.5 eV. This allowed us to experimentally determine the adiabatic ionization energy (AIE) and fragment ion appearance energies (AE) of gas-phase methyl isocyanide. Its AIE has been measured with a precision never achieved before. It is found to be AIEexp = 11.263 ± 0.005 eV. We observe a vibrational progression upon ionization corresponding to the population of vibrational levels of the ground state of the methyl isocyanide cation. In addition, four fragment ion appearance energies (AEs) were measured to be AE (m/z 40) = 12.80 ± 0.05 eV, AE (m/z 39) = 13.70 ± 0.05, AE (m/z 15) = 13.90 ± 0.05 eV, AE (m/z 14) 13.85 ± 0.05 eV, respectively. In order to interpret the experimental data, we performed state-of-the-art computations using the explicitly correlated coupled cluster approach. We also considered the zero-point vibrational energy (ZPVE), core-valence (CV) and scalar relativistic (SR) effects. The results of theoretical calculations of the AIE and AEs are in excellent agreement with the experimental findings allowing for assignment of the fragmentations to the loss of neutral H, H2, CN and HCN upon ionization of CH3NC. The computations show that in addition to the obvious bond breakings, some of the corresponding ionic fragments result from rearrangements - upon photon absorption - either before or after electron ejection.

2.
J Chem Phys ; 140(4): 044329, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25669545

RESUMEN

UV laser irradiations of cryogenic solid argon matrices doped with a mixture of acetylene and cyanodiacetylene (HC5N) resulted in the formation of a longer carbon-nitrogen chain, cyanotriacetylene (HC7N). The identification of this species was accomplished based on IR vibrational spectroscopy (including the study of isotopically labeled compounds), on electronic luminescence spectroscopy, and on theoretical predictions. Additionally, IR absorption bands recognized as due to HC7N were detected in photolysed Ar matrices doped with a cyanoacetylene/diacetylene mixture; this assignment was confirmed with the mass spectrometry of gases released upon the warm-up of the sample.

3.
J Chem Phys ; 141(13): 134311, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25296810

RESUMEN

The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.


Asunto(s)
Acetileno/análogos & derivados , Cationes/química , Cianuros/química , Medio Ambiente Extraterrestre/química , Nitrilos/química , Acetaldehído/química , Acetilación , Acetileno/química , Modelos Moleculares , Rayos Ultravioleta , Vacio , Agua/química
4.
J Phys Chem A ; 116(9): 2225-33, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-22335542

RESUMEN

We focus on low temperature reactivity from 25 to 300 K, in ice containing acetaldehyde, ammonia, and formic acid. We show that the warming of this ice mixture forms the acetaldehyde ammonia trimer (2,4,6-trimethyl-1,3,5-hexahydrotriazine, C(6)H(15)N(3)) after five steps. The reaction is monitored by FTIR spectroscopy and mass spectrometry. We propose a mechanism for its formation that differs from the one proposed in the liquid phase. The reaction intermediates, α-aminoethanol (from 80 K) and ethanimine (formed at 180 K), have been identified by a mechanistic approach: each step of the reaction has been treated separately. The chemical implications and the astrophysical relevance of the study are also discussed.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 274: 121071, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35276473

RESUMEN

The rotational spectrum (4-40 GHz and 50-330 GHz) has been measured and analyzed for trifluoroacetaldehyde, also known as fluoral (CF3CHO), which is one of the degradation products of the fluorinated contaminants emitted into the atmosphere. The complexity of the spectroscopic analysis of this molecule arises from the strong coupling between the internal rotation motion of CF3 group and the overall rotation of the molecule. The value obtained for its coupling constant (ρ = 0.91723481(49)) is comparable to the corresponding value of methanol (CH3OH, ρ = 0.81), which is known for its complex spectrum. A total of 12,322 transitions of the ground, the first and second excited torsional states (ΔE1υt = 62.0183(13)cm-1; ΔE2υt = 120.3315(13)cm-1) with J ≤ 50 were included in the analysis that was performed employing the rho-axis-method (RAM), and the RAM36 code. A fit within experimental error (root mean square deviation equals to 35 kHz) has been achieved for this dataset using 47 parameters of the RAM torsion-rotation Hamiltonian. In the course of the analysis, it became evident that for such high ρ value, as it is determined for fluoral, a larger than usual torsional basis set at the first diagonalization step of the two-step diagonalization procedure is required for achieving a fit within experimental error.

6.
Astron Astrophys ; 6472021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34257461

RESUMEN

CONTEXT: For all the amides detected in the interstellar medium (ISM), the corresponding nitriles or isonitriles have also been detected in the ISM, some of which have relatively high abundances. Among the abundant nitriles for which the corresponding amide has not yet been detected is cyanoacetylene (HCCCN), whose amide counterpart is propiolamide (HCCC(O)NH2). AIMS: With the aim of supporting searches for this amide in the ISM, we provide a complete rotational study of propiolamide from 6 GHz to 440 GHz. METHODS: Time-domain Fourier transform microwave (FTMW) spectroscopy under supersonic expansion conditions between 6 GHz and 18 GHz was used to accurately measure and analyze ground-state rotational transitions with resolved hyperfine structure arising from nuclear quadrupole coupling interactions of the 14N nucleus. We combined this technique with the frequency-domain room-temperature millimeter wave and submillimeter wave spectroscopies from 75 GHz to 440 GHz in order to record and assign the rotational spectra in the ground state and in the low-lying excited vibrational states. We used the ReMoCA spectral line survey performed with the Atacama Large Millimeter/submillimeter Array toward the star-forming region Sgr B2(N) to search for propiolamide. RESULTS: We identified and measured more than 5500 distinct frequency lines of propiolamide in the laboratory. These lines were fitted using an effective semi-rigid rotor Hamiltonian with nuclear quadrupole coupling interactions taken into consideration. We obtained accurate sets of spectroscopic parameters for the ground state and the three low-lying excited vibrational states. We report the nondetection of propiolamide toward the hot cores Sgr B2(N1S) and Sgr B2(N2). We find that propiolamide is at least 50 and 13 times less abundant than acetamide in Sgr B2(N1S) and Sgr B2(N2), respectively, indicating that the abundance difference between both amides is more pronounced by at least a factor of 8 and 2, respectively, than for their corresponding nitriles. CONCLUSIONS: Although propiolamide has yet to be included in astrochemical modeling networks, the observed upper limit to the ratio of propiolamide to acetamide seems consistent with the ratios of related species as determined from past simulations. The comprehensive spectroscopic data presented in this paper will aid future astronomical searches.

7.
Phys Chem Chem Phys ; 12(16): 4165-71, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20379508

RESUMEN

Finding complex organic molecules in the interstellar medium (ISM) is a major concern for understanding the possible role of interstellar organic chemistry in the synthesis of prebiotic species. The present interdisciplinary report is a prospective study aimed at helping detection of heteroaromatic compounds or at least of some of their isomers in the ISM. The thermodynamic stabilities of the C(4)H(5)N, C(4)H(4)O, C(4)H(4)S families were calculated using density functional theory (DFT). It was found that pyrrole, furan and thiophene are unambiguously the most stable isomers at the 10-50 K temperatures of the ISM. Several of the less stable isomers were synthesized and flash vacuum thermolysis experiments were performed on these species. Although the detection of pyrrole in the pyrolysis of many compounds has been reported in the literature, we observed that none of its isomers led to pyrrole in these conditions, which suggests that other formation routes are to be considered. On the other hand, these three aromatic compounds present a very high stability, few % been decomposed at 1500 K by flash vacuum thermolysis; these experiments also show a great stability of crotonitrile that is the most stable compound that can be formed in these conditions. The rotational constants, dipole moments and IR frequencies of the low-lying isomers are given to encourage laboratory experiments on these prototype molecules.


Asunto(s)
Furanos/química , Pirroles/química , Tiofenos/química , Isomerismo , Prebióticos , Termodinámica
8.
Astron Astrophys ; 644: A102, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33594292

RESUMEN

CONTEXT: S-methyl thioformate CH3SC(O)H is a monosulfur derivative of methyl formate, a relatively abundant component of the interstellar medium (ISM). S-methyl thioformate being, thermodynamically, the most stable isomer, it can be reasonably proposed for detection in the ISM. AIMS: This work aims to experimentally study and theoretically analyze the ground and first torsional excited states for CH3SC(O)H in a large spectral range for astrophysical use. METHODS: S-methyl thioformate was synthesized as a result of a reaction of methyl mercaptan with acetic-formic anhydride. The millimeter-wave spectrum was then recorded for the first time from 150 to 660 GHz with the solid-state spectrometer located at Lille. RESULTS: A set of 3545 lines is determined and combined with 54 previously measured lines in the microwave region, belonging to ground state ν t = 0 as well as 1391 transitions in the first excited state of torsion ν 18 = 1. Some 164 lines were also assigned to ν 18 = 2 for the A-species. A global fit was performed using the BELGI-Cs code taking into account the large splitting of A and E lines due to methyl internal rotation motion with a relatively low barrier, V3 = 127.4846(15) cm-1. CONCLUSIONS: Using our spectroscopy work, a deep search of S-methyl thioformate was carried out in the IRAM 30m and ALMA data of different high-mass star-forming regions (Orion KL and Sgr B2). We derived an upper limit to the CH3SC(O)H column density in these regions.

9.
Astron Astrophys ; 6192018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30595605

RESUMEN

CONTEXT: The analysis of isomeric species of a compound observed in the interstellar medium (ISM) is a useful tool to understand the chemistry of complex organic molecules. It could, likewise, assist in the detection of new species. AIMS: Our goal consists in analyzing one of the two most stable species of the C3H4O family, methyl ketene, whose actual rotational parameters are not precise enough to allow its detection in the ISM. The obtained parameters will be used to search for it in the high-mass star-forming regions Orion KL and Sagittarius B2, as well as in the cold dark clouds TMC-1 in the Taurus Molecular Cloud and Barnard 1 (B1-b). METHODS: A millimeter-wave room-temperature rotational spectrum of methyl ketene was recorded from 50 to 330 GHz. The internal rotation analysis of its ground state and first torsional excited state was performed with the rho-axis method employing the RAM36 program. RESULTS: More than 3000 transitions of the rotational spectrum of the ground state (Kamax = 18) and first torsional excited state (Kamax = 13) of methyl ketene were fitted using a Hamiltonian that contains 41 parameters with an RMS (root mean square) of 41 kHz. Column density limits were calculated but no lines were detected in the ISM belonging to methyl ketene.

10.
Astron Astrophys ; 6092018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29983447

RESUMEN

AIMS: Methoxyamine is a potential interstellar amine that has been predicted by gas-grain chemical models for the formation of complex molecules. The aim of this work is to provide direct experimental frequencies of its ground-vibrational state in the millimeter- and submillimeter-wave regions to achieve its detection in the interstellar medium. METHODS: Methoxyamine was chemically liberated from its hydrochloride salt, and its rotational spectrum was recorded at room temperature from 75 to 480 GHz using the millimeter-wave spectrometer in Valladolid. Many observed transitions revealed A-E splitting caused by the internal rotation of the methyl group, which had to be treated with specific internal rotation codes. RESULTS: Over 400 lines were newly assigned for the most stable conformer of methoxyamine, and a precise set of spectroscopic constants was obtained. Spectral features of methoxyamine were then searched for in the Orion KL, Sgr B2, B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methoxyamine were derived.

11.
Astrophys J ; 861(1)2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30185993

RESUMEN

Methyl isocyanate (CH3NCO) was recently found in hot cores and suggested on comet 67P/CG. The incorporation of this molecule into astrochemical networks requires data on its formation and destruction. In this work, ices of pure CH3NCO and of CH3NCO(4-5%)/H2O mixtures deposited at 20 K were irradiated with a UV D2 lamp (120-400 nm) and bombarded by 5 keV electrons to mimic the secondary electrons produced by cosmic rays (CRs). The destruction of CH3NCO was studied using IR spectroscopy. After processing, the νa-NCO band of CH3NCO disappeared and IR bands corresponding to CO, CO2, OCN- and HCN/CN- appeared instead. The products of photon and electron processing were very similar. Destruction cross sections and half-life doses were derived from the measurements. Water ice provides a good shield against UV irradiation (half-life dose of ~ 64 eV molecule-1 for CH3NCO in water-ice), but not so good against high-energy electrons (half-life dose ~ 18 eV molecule-1). It was also found that CH3NCO does not react with H2O over the 20-200 K temperature range. These results indicate that hypothetical CH3NCO in the ices of dense clouds should be stable against UV photons and relatively stable against CRs over the lifetime of a cloud (~ 107 yr), and could sublime in the hot core phase. On the surface of a Kuiper belt object (the original location of comet 67P/CG) the molecule would be swiftly destroyed, both by photons and CRs, but embedded below just 10 µm of water-ice, the molecule could survive for ~ 109 yr.

12.
Mon Not R Astron Soc ; 470(4): 4222-4230, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29861511

RESUMEN

Methyl isocyanate has been recently detected in comet 67P/ Churyumov-Gerasimenko (67P/CG) and in the interstellar medium. New physicochemical studies on this species are now necessary as tools for subsequent studies in astrophysics. In this work, infrared spectra of solid CH3NCO have been obtained at temperatures of relevance for astronomical environments. The spectra are dominated by a strong, characteristic multiplet feature at 2350-2250 cm-1, which can be attributed to the antisymmetric stretching of the NCO group. A phase transition from amorphous to crystalline methyl isocyanate is observed at ~ 90 K. The band strengths for the absorptions of CH3NCO in ice at 20 K have been measured. Deuterated methyl isocyanate is used to help with the spectral assignment. No X-ray structure has been reported for crystalline CH3NCO. Here we advance a tentative theoretical structure, based on Density Functional Theory (DFT) calculations, derived taking as a starting point the crystal of isocyanic acid. A harmonic theoretical spectrum is calculated then for the proposed structure, and compared with the experimental data. A mixed ice of H2O and CH3NCO was formed by simultaneous deposition of water and methyl isocyanate at 20 K. The absence of new spectral features indicates that methyl isocyanate and water do not react appreciably at 20 K, but form a stable mixture. The high CH3NCO/H2O ratio reported for comet 67P/CG, and the characteristic structure of the 2350-2250 cm-1 band, make of it a very good candidate for future astronomical searches.

13.
Astron Astrophys ; 5922016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27738349

RESUMEN

CONTEXT: More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. AIMS: The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. METHODS: The rotational spectrum of carbonyl cyanide was measured in the frequency range 152 - 308 GHz and analyzed using Watson's A- and S-reduction Hamiltonians. RESULTS: The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources.

14.
Astron Astrophys ; 5912016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27721514

RESUMEN

AIMS: The recent discovery of methyl isocyanate (CH3NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH3OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. METHODS: The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A-E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. RESULTS: The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J″ = 10 - 35 and [Formula: see text] and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty. Spectral features of methyl cyanate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methyl cyanate are provided.

15.
Astron Astrophys ; 5872016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27274565

RESUMEN

The recent analysis of the composition of the frozen surface of comet 67P/Churyumov-Gerasimenko has revealed a significant number of complex organic molecules. Methyl isocyanate (CH3NCO) is one of the more abundant species detected on the comet surface. In this work we report extensive characterization of its rotational spectrum resulting in a list of 1269 confidently assigned laboratory lines and its detection in space towards the Orion clouds where 399 lines of the molecule have been unambiguously identified. We find that the limited mm-wave laboratory data reported prior to our work require some revision. The abundance of CH3NCO in Orion is only a factor of ten below those of HNCO and CH3CN. Unlike the molecular abundances in the coma of comets, which correlate with those of warm molecular clouds, molecular abundances in the gas phase in Orion are only weakly correlated with those measured on the comet surface. We also compare our abundances with those derived recently for this molecule towards Sgr B2 (Halfen et al. 2015). A more accurate abundance of CH3NCO is provided for this cloud based on our extensive laboratory work.

16.
Astron Astrophys ; 5822015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26869726

RESUMEN

We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH3CH2OCH3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH3CH2CH2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 1015 cm-2 and ≤(1.0 ± 0.2)× 1015 cm-2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH3OCOH, CH3CH2OCOH, CH3OCH3, CH3OH, and CH3CH2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME) ≥ 150 in the compact ridge of Orion.

17.
Planet Space Sci ; 43(1-2): 75-81, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-11538440

RESUMEN

Photolysis of germane (GeH4) in the presence of acetylene (C2H2), propyne (C3H4) or phosphine (PH3) with a 185 nm mercury lamp has been studied. The volatile products formed in these reactions are characterized by 1H, 31P and 13C NMR. Vinylgermanes are the first reaction products formed in the photolysis of GeH4 with alkynes. A reaction pathway is proposed. The initial step is the dissociation of germane 1 to hydrogen and GeH3 radicals. Addition of the germyl radical on alkyne is proposed as the next step. Vinyl-germanes are then formed by radical combination. Photolysis of ethenylgermane 2 gives diethenylgermane 3 in the presence of acetylene and digermaethane 4 in the presence of GeH4. The application of these findings to Jovian and Saturn atmospheric chemistry is discussed.


Asunto(s)
Atmósfera , Germanio , Júpiter , Fotoquímica/métodos , Fotólisis , Saturno , Acetileno/análisis , Alquinos/análisis , Exobiología , Medio Ambiente Extraterrestre , Espectroscopía de Resonancia Magnética , Nitrógeno/análisis , Fosfinas/análisis , Análisis Espectral , Temperatura
18.
Planet Space Sci ; 43(1-2): 25-31, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-11538434

RESUMEN

A wide range of experiments has already been carried out to simulate the chemical evolution of Titan. Such experiments can provide useful information on the possible nature of minor constituents, mostly organic, likely to be present in Titan's atmosphere. Indeed, all but one of the organic compounds already detected in Titan's atmosphere have been identified in simulation experiments. The exception, C4N2, as well as other compounds expected in Titan from theoretical modeling, such as other N-organics, mainly CH2N2, and polyynes, namely C6H2, have never been detected in experimental simulation. It turned out that these compounds were thermally unstable, and the temperature conditions used during the simulation experiments (including conditions used for chemical analysis) were not appropriate. We have recently started a new program of simulation experiments using temperature conditions close to those of Titan's environment, more compatible with the build-up and detection of organics only stable at low temperature. Spark discharge of N2-CH4 gas mixtures was carried out at low temperature in the range of 100-150 K. The analysis of the obtained products was performed through FTIR, GC and GC-MS techniques. GC-peak identification was done owing to its mass spectrum and, in most cases, by comparison of the retention time and of the mass spectrum with standards. We report here the first detection in Titan's simulation experiments of C6H2. Its abundance is a few 10(-2) relative to C4H2. We also report a tentative identification of HC5N (to be confirmed by use of standard) with an abundance of a few 10(-2) relative to HC3N. The possible presence of HC5N suggested by our work provides the occurrence of very novel pathways in the formation of Titan's organic aerosols, involving not only C and H but also N atoms.


Asunto(s)
Atmósfera , Medio Ambiente Extraterrestre , Hidrocarburos/análisis , Modelos Químicos , Saturno , Temperatura , Acetileno/análisis , Acetileno/química , Aerosoles , Cromatografía de Gases , Frío , Exobiología , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Metano/análisis , Metano/química , Nitrógeno/análisis , Origen de la Vida , Fotoquímica , Espectroscopía Infrarroja por Transformada de Fourier
19.
Planet Space Sci ; 43(1-2): 83-9, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-11538441

RESUMEN

The interpretation of mid-UV albedo spectra of planetary atmospheres, especially that of Titan, is the main goal of the SIPAT (Spectroscopie uv d'Interet Prebiologique dans l'Atmosphere de Titan) research program. This laboratory experiment has been developed in order to systematically determine the absorption coefficients of molecular compounds which are potential absorbers of scattered sunlight in planetary atmospheres, with high spectral resolution, and at various temperatures below room temperature. From photochemical modelling and experimental simulations, we may expect triacetylene (C6H2) to be present in the atmosphere of Titan, even though it has not yet been detected. We present here the first determination of the absolute absorption coefficient of that compound in the 200-300 nm range and at two temperatures (296 K and 233 K). The temperature dependence of the C6H2 absorption coefficient in that wavelength range is compared to that previously observed in the case of cyanoacetylene (HC3N). We then discuss the implications of the present results for the interpretation of Titan UV spectra, where it appears that large uncertainities can be introduced either by the presence of trace impurities in laboratory samples or by the variations of absorption coefficients with temperature.


Asunto(s)
Acetileno/análogos & derivados , Acetileno/análisis , Atmósfera , Medio Ambiente Extraterrestre , Hidrocarburos/análisis , Saturno , Temperatura , Exobiología , Espectrofotometría Atómica , Espectrofotometría Ultravioleta
20.
Adv Space Res ; 16(2): 85-92, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-11543539

RESUMEN

Phosphine (PH3) 1 has been observed in the atmospheres of Jupiter and Saturn. We have studied the photochemical reactions of this compound with acetylene (C2H2), an alkyne also detected in these atmospheres. The volatile products formed in these reactions were characterized by H, 31P and 13C NMR. The ethenylphosphine 2 is the first product formed in the photolysis of PH3 in the presence Of C2H2. Photolysis of PH3 in the presence of propyne (C3H4) led to the formation of the Z- and E-prop-1-enylphosphines and traces of 1-methylethenylphosphine. A reaction pathway is proposed. The initial step is the dissociation of PH3 to hydrogen and PH2 radicals. Addition of the phosphinyl radical on alkyne occurs as the next step. Vinylphosphines are then formed by radical combination. This proposed reaction pathway takes into account the nature of the products and studies devoted to the photolysis of germane (GeH4) or hydrogen sulfide (H2S) in the presence of alkyne. Attempts to detect the methylidynephosphine HC triple bond P (the isoelectronic compound of HC triple bond N), in the photolysis products of PH3-C2H2 mixtures were unsuccessful. The application of these findings to Jovian and Saturn atmospheric chemistry is discussed.


Asunto(s)
Acetileno/química , Alquinos/química , Júpiter , Fosfinas/química , Saturno , Alquinos/síntesis química , Atmósfera/química , Medio Ambiente Extraterrestre , Fosfinas/análisis , Fosfinas/síntesis química , Fotoquímica , Fotólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA