Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Dev Biol ; 359(2): 303-20, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21884692

RESUMEN

Adult skeletal muscles in vertebrates are composed of different types of myofibers endowed with distinct metabolic and contraction speed properties. Genesis of this fiber-type heterogeneity during development remains poorly known, at least in mammals. Six1 and Six4 homeoproteins of the Six/sine oculis family are expressed throughout muscle development in mice, and Six1 protein is enriched in the nuclei of adult fast-twitch myofibers. Furthermore, Six1/Six4 proteins are known to control the early activation of fast-type muscle genes in myocytes present in the mouse somitic myotome. Using double Six1:Six4 mutants (SixdKO) to dissect in vivo the genesis of muscle fiber-type heterogeneity, we analyzed here the phenotype of the dorsal/epaxial muscles remaining in SixdKO. We show by electron microscopy analysis that the absence of these homeoproteins precludes normal sarcomeric organization of the myofiber leading to a dystrophic aspect, and by immunohistochemistry experiments a deficiency in synaptogenesis. Affymetrix transcriptome analysis of the muscles remaining in E18.5 SixdKO identifies a major role for these homeoproteins in the control of genes that are specifically activated in the adult fast/glycolytic myofibers, particularly those controlling Ca(2+) homeostasis. Absence of Six1 and Six4 leads to the development of dorsal myofibers lacking expression of fast-type muscle genes, and mainly expressing a slow-type muscle program. The absence of restriction of the slow-type program during the fetal period in SixdKO back muscles is associated with a decreased HDAC4 protein level, and subcellular relocalization of the transcription repressor Sox6. Six genes thus behave as essential global regulators of muscle gene expression, as well as a central switch to drive the skeletal muscle fast phenotype during fetal development.


Asunto(s)
Proteínas de Drosophila/genética , Embrión de Mamíferos/metabolismo , Proteínas de Homeodominio/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Animales , Northern Blotting , Células Cultivadas , Proteínas de Drosophila/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/ultraestructura , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Desarrollo de Músculos/genética , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/ultraestructura , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/citología , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/ultraestructura , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcriptoma
2.
Hum Mol Genet ; 19(4): 684-96, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19959526

RESUMEN

Glycogen storage disease type II (GSDII) or Pompe disease is an autosomal recessive disorder caused by acid alpha-glucosidase (GAA) deficiency, leading to lysosomal glycogen accumulation. Affected individuals store glycogen mainly in cardiac and skeletal muscle tissues resulting in fatal hypertrophic cardiomyopathy and respiratory failure in the most severe infantile form. Enzyme replacement therapy has already proved some efficacy, but results remain variable especially in skeletal muscle. Substrate reduction therapy was successfully used to improve the phenotype in several lysosomal storage disorders. We have recently demonstrated that shRNA-mediated reduction of glycogen synthesis led to a significant reduction of glycogen accumulation in skeletal muscle of GSDII mice. In this paper, we analyzed the effect of a complete genetic elimination of glycogen synthesis in the same GSDII model. GAA and glycogen synthase 1 (GYS1) KO mice were inter-crossed to generate a new double-KO model. GAA/GYS1-KO mice exhibited a profound reduction of the amount of glycogen in the heart and skeletal muscles, a significant decrease in lysosomal swelling and autophagic build-up as well as a complete correction of cardiomegaly. In addition, the abnormalities in glucose metabolism and insulin tolerance observed in the GSDII model were corrected in double-KO mice. Muscle atrophy observed in 11-month-old GSDII mice was less pronounced in GAA/GYS1-KO mice, resulting in improved exercise capacity. These data demonstrate that long-term elimination of muscle glycogen synthesis leads to a significant improvement of structural, metabolic and functional defects in GSDII mice and offers a new perspective for the treatment of Pompe disease.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/fisiopatología , Glucógeno/biosíntesis , Músculo Esquelético/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Glucosa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/enzimología , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
3.
Dev Biol ; 338(2): 168-82, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19962975

RESUMEN

While the signaling pathways and transcription factors active in adult slow- and fast-type muscles begin to be characterized, genesis of muscle fiber-type diversity during mammalian development remains unexplained. We provide evidence showing that Six homeoproteins are required to activate the fast-type muscle program in the mouse primary myotome. Affymetrix transcriptomal analysis of Six1(-/-)Six4(-/-) E10.5 somites revealed the specific down-regulation of many genes of the fast-type muscle program. This data was confirmed by in situ hybridization performed on Six1(-/-)Six4(-/-) embryos. The first mouse myocytes express both fast-type and slow-type muscle genes. In these fibers, Six1 and Six4 expression is required to specifically activate fast-type muscle genes. Chromatin immunoprecipitation experiments confirm the binding of Six1 and Six4 on the regulatory regions of these muscle genes, and transfection experiments show the ability of these homeoproteins to activate specifically identified fast-type muscle genes. This in vivo wide transcriptomal analysis of the function of the master myogenic determinants, Six, identifies them as novel markers for the differential activation of a specific muscle program during mammalian somitic myogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Fibras Musculares de Contracción Rápida , Proteínas Musculares/genética , Transactivadores/fisiología , Animales , Embrión de Mamíferos , Proteínas de Homeodominio/genética , Ratones , Desarrollo de Músculos , Somitos , Transactivadores/genética
4.
FEBS Lett ; 580(2): 410-4, 2006 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-16380121

RESUMEN

Liver key genes for carbohydrate and lipid homeostasis are regulated by insulin and glucose. The sterol regulatory-element binding protein-1c (SREBP-1c) has emerged as a mediator of insulin effects on gene transcription, particularly on glucokinase (GK). In this paper, we show that despite stimulation of GK promoter transcription by overexpression of mature SREBP-1c, insulin induced GK transcription at least 4h ahead of accumulation of mature SREBP-1c in the nucleus. Importantly, the knockdown of SREBP-1 mRNA using a RNA-interference technique reduced the level of nuclear SREBP-1 protein, diminished fatty acid synthase mRNA level, but did not affect GK and L-pyruvate kinase mRNA levels. We concluded that SREBP-1 is unlikely to be the mediator of the early insulin effect on GK gene transcription.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Glucoquinasa/metabolismo , Hepatocitos/metabolismo , Insulina/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Células Cultivadas , Silenciador del Gen , Glucoquinasa/genética , Hepatocitos/citología , Masculino , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Transcripción Genética
5.
Diabetes ; 51(6): 1722-8, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12031958

RESUMEN

Sterol regulatory element binding protein-1c (SREBP-1c) is a transcription factor that mediates insulin effects on hepatic gene expression. It is itself transcriptionally stimulated by insulin in hepatocytes. Here we show that SREBP-1c mRNA is expressed in adult rat skeletal muscles and that this expression is decreased by diabetes. The regulation of SREBP-1c expression was then assessed in cultures of adult muscle satellite cells. These cells form spontaneously contracting multinucleated myotubes within 7 days of culture. SREBP-1c mRNA is expressed in contracting myotubes. A 4-h treatment with 100 nmol/l insulin increases SREBP-1c expression and nuclear abundance by two- to threefold in myotubes. In cultured myotubes, insulin increases the expression of glycolytic and lipogenic enzyme genes and inhibits the 9-cis retinoic acid-induced UCP3 expression. These effects of insulin are mimicked by adenovirus-mediated expression of a transcriptionally active form of SREBP-1c. We conclude that in skeletal muscles, SREBP-1c expression is sensitive to insulin and can transduce the positive and negative actions of the hormone on specific genes and thus has a pivotal role in long-term muscle insulin sensitivity.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/farmacología , Proteínas Portadoras/genética , Proteínas de Unión al ADN/farmacología , Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Lípidos/biosíntesis , Músculo Esquelético/fisiología , Factores de Transcripción , Alitretinoína , Animales , Northern Blotting , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/fisiología , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Diabetes Mellitus Experimental/metabolismo , Regulación de la Expresión Génica , Insulina/farmacología , Canales Iónicos , Hígado/metabolismo , Masculino , Proteínas Mitocondriales , Contracción Muscular , Músculo Esquelético/química , Isoformas de Proteínas/genética , ARN Mensajero/análisis , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Transfección , Tretinoina/farmacología , Proteína Desacopladora 3
6.
Diabetes ; 53(3): 672-8, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14988251

RESUMEN

Type 2 diabetic patients present high triglyceride and low HDL levels, significant determinants for the risk of atherosclerosis. Transgenic mice overproducing human apolipoprotein (apo)A-II, one of the two major apos of HDLs, display the same lipid disorders. Here, we investigated the possible regulation of apoA-II gene expression by glucose. In primary rat hepatocytes and in HepG2 cells, the transcription of the human apoA-II gene was upregulated by glucose. This response was mediated by a hormone-responsive element within the enhancer of the apoA-II promoter and was dependent on hepatocyte nuclear factor-4alpha. Accordingly, in transgenic mice, the human apoA-II gene is stimulated by a high-carbohydrate diet after fasting and at weaning. By contrast, the apoA-II mRNA level is not modified in streptozotocin-induced diabetic rats. In transgenic mice overexpressing the human apoA-II gene, plasma human apoA-II concentration was positively correlated with blood glucose levels. These mice displayed a marked delay in plasma glucose tolerance as compared with control mice. We hypothesize that the following pathogenic pathway might occur in the course of type 2 diabetes: increased apoA-II level causes a rise in plasma triglyceride level and glucose intolerance, resulting in hyperglycemia, which in turn might further increase apoA-II gene transcription.


Asunto(s)
Apolipoproteína A-II/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Transcripción Genética/efectos de los fármacos , Animales , Secuencia de Bases , Glucemia/metabolismo , Cartilla de ADN , Humanos , Hígado/fisiología , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa/métodos , ARN Mensajero/genética
7.
Matrix Biol ; 29(4): 317-29, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20193761

RESUMEN

Glycosaminoglycans (GAG) are sulfated polysaccharides that play an important role in regulating cell functions. GAG mimetics called RGTAs (for ReGeneraTing Agents) have been shown to stimulate tissue repair. In particular they accelerate myogenesis, in part via their heparin-mimetic property towards growth factors. RGTAs also increase activity of calcium-dependent intracellular protease suggesting an effect on calcium cellular homeostasis. This effect was presently investigated on myoblasts in vitro using one member of the RGTA family molecule named OTR4120. We have shown that OTR4120 or heparin induced transient increases of intracellular calcium concentration ([Ca(2+)]i) in pre-fusing myoblasts from both mouse SolD7 cell line and rat skeletal muscle satellite cells grown in primary culture by mobilising sarcoplasmic reticulum store. This [Ca(2+)]i was not mediated by ryanodine receptors but instead resulted from stimulation of the Inositol-3 phosphate-phospholipase C activation pathway. OTR4120-induced calcium transient was not mediated through an ATP, nor a tyrosine kinase, nor an acetylcholine receptor but principally through serotonin 5-HT2A receptor. This original finding shows that the GAG mimetic can induce calcium signal through serotonin receptors and the IP3 pathway may be relevant to its ability to favour myoblast differentiation. It supports a novel and unexpected function of GAGs in the regulation of calcium homeostasis.


Asunto(s)
Calcio/metabolismo , Glicosaminoglicanos/farmacología , Mioblastos/metabolismo , Animales , Calcio/farmacología , Calcio de la Dieta/metabolismo , Calcio de la Dieta/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Clonales , Citoplasma/metabolismo , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Heparina/farmacología , Fosfatos de Inositol , Ratones , Desarrollo de Músculos/efectos de los fármacos , Ratas , Ratas Wistar , Receptor de Serotonina 5-HT2A/metabolismo , Regeneración/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal/efectos de los fármacos
8.
PLoS One ; 4(12): e8509, 2009 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-20041157

RESUMEN

BACKGROUND: Intramyocellular lipid accumulation is strongly related to insulin resistance in humans, and we have shown that high glucose concentration induced de novo lipogenesis and insulin resistance in murin muscle cells. Alterations in Wnt signaling impact the balance between myogenic and adipogenic programs in myoblasts, partly due to the decrease of Wnt10b protein. As recent studies point towards a role for Wnt signaling in the pathogenesis of type 2 diabetes, we hypothesized that activation of Wnt signaling could play a crucial role in muscle insulin sensitivity. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that SREBP-1c and Wnt10b display inverse expression patterns during muscle ontogenesis and regeneration, as well as during satellite cells differentiation. The Wnt/beta-catenin pathway was reactivated in contracting myotubes using siRNA mediated SREBP-1 knockdown, Wnt10b over-expression or inhibition of GSK-3beta, whereas Wnt signaling was inhibited in myoblasts through silencing of Wnt10b. SREBP-1 knockdown was sufficient to induce Wnt10b protein expression in contracting myotubes and to activate the Wnt/beta-catenin pathway. Conversely, silencing Wnt10b in myoblasts induced SREBP-1c protein expression, suggesting a reciprocal regulation. Stimulation of the Wnt/beta-catenin pathway i) drastically decreased SREBP-1c protein and intramyocellular lipid deposition in myotubes; ii) increased basal glucose transport in both insulin-sensitive and insulin-resistant myotubes through a differential activation of Akt and AMPK pathways; iii) restored insulin sensitivity in insulin-resistant myotubes. CONCLUSIONS/SIGNIFICANCE: We conclude that activation of Wnt/beta-catenin signaling in skeletal muscle cells improved insulin sensitivity by i) decreasing intramyocellular lipid deposition through downregulation of SREBP-1c; ii) increasing insulin effects through a differential activation of the Akt/PKB and AMPK pathways; iii) inhibiting the MAPK pathway. A crosstalk between these pathways and Wnt/beta-catenin signaling in skeletal muscle opens the exciting possibility that organ-selective modulation of Wnt signaling might become an attractive therapeutic target in regenerative medicine and to treat obese and diabetic populations.


Asunto(s)
Insulina/farmacología , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Adenilato Quinasa/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Células Cultivadas , Desoxiglucosa/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Glucosa/farmacología , Transportador de Glucosa de Tipo 4/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Indoles/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Contracción Muscular/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/enzimología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Oximas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/enzimología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
9.
PLoS One ; 3(12): e3910, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19079548

RESUMEN

Aging is associated with a progressive loss of muscle mass, increased adiposity and fibrosis that leads to sarcopenia. At the molecular level, muscle aging is known to alter the expression of a variety of genes but very little is known about the molecular effectors involved. SRF (Serum Response Factor) is a crucial transcription factor for muscle-specific gene expression and for post-natal skeletal muscle growth. To assess its role in adult skeletal muscle physiology, we developed a post-mitotic myofiber-specific and tamoxifen-inducible SRF knockout model. Five months after SRF loss, no obvious muscle phenotype was observed suggesting that SRF is not crucial for myofiber maintenance. However, mutant mice progressively developed IIB myofiber-specific atrophy accompanied by a metabolic switch towards a more oxidative phenotype, muscular lipid accumulation, sarcomere disorganization and fibrosis. After injury, mutant muscles exhibited an altered regeneration process, showing smaller regenerated fibers and persistent fibrosis. All of these features are strongly reminiscent of abnormalities encountered in aging skeletal muscle. Interestingly, we also observed an important age associated decrease in SRF expression in mice and human muscles. Altogether, these results suggest that a naturally occurring SRF down-regulation precedes and contributes to the muscle aging process. Indeed, triggering SRF loss in the muscles of mutant mice results in an accelerated aging process.


Asunto(s)
Envejecimiento Prematuro/patología , Músculo Esquelético/patología , Factor de Respuesta Sérica/deficiencia , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Regulación hacia Abajo/efectos de los fármacos , Fibrosis , Humanos , Técnicas In Vitro , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Ratones Noqueados , Ratones Mutantes , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/ultraestructura , Atrofia Muscular/patología , Regeneración/efectos de los fármacos , Reproducibilidad de los Resultados , Sarcómeros/efectos de los fármacos , Sarcómeros/patología , Sarcómeros/ultraestructura , Factor de Respuesta Sérica/genética , Tamoxifeno/administración & dosificación , Tamoxifeno/farmacología
10.
J Cell Sci ; 117(Pt 10): 1937-44, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15039461

RESUMEN

We previously reported that sterol-regulatory-element-binding-protein-1c (SREBP-1c) mediates insulin upregulation of genes encoding glycolytic and lipogenic enzymes in rat skeletal muscle. Here, we assessed whether glucose could regulate gene expression in contracting myotubes deriving from cultured muscle satellite cells. Glucose uptake increased twofold after a 30 minute treatment with a high glucose concentration, suggesting an acute glucose-stimulated glucose uptake. Time-course experiments showed that, within 3 hours, glucose stimulated the expression of hexokinase II, fatty acid synthase and acetyl-CoA-carboxylase-2 proteins, leading to an increased lipogenic flux and intracellular lipid accumulation in contracting myotubes. Furthermore, kinetic experiments indicated that glucose upregulated SREBP-1c precursor and nuclear proteins within 30 minutes, SREBP-1c nuclear translocation being confirmed using immunocytochemistry. In addition, the knockdown of SREBP-1 mRNA using a RNA-interference technique totally abrogated the glucose-induced upregulation of lipogenic enzymes, indicating that SREBP-1c mediates the action of glucose on these genes in rat skeletal muscle. Finally, we found that glucose rapidly stimulated SREBP-1c maturation through a Jak/STAT dependent pathway. We propose that increased intramuscular lipid accumulation associated with muscle insulin resistance in obesity or type-2 diabetes could arise partly from de novo fatty acid synthesis in skeletal muscle.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas de Unión al ADN/metabolismo , Músculos/citología , Factores de Transcripción/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Transporte Activo de Núcleo Celular , Animales , Western Blotting , Núcleo Celular/metabolismo , Células Cultivadas , Medio de Cultivo Libre de Suero/metabolismo , Medio de Cultivo Libre de Suero/farmacología , Citoplasma/metabolismo , Ácido Graso Sintasas/metabolismo , Glucosa/metabolismo , Glucosa/farmacocinética , Glucólisis , Hexoquinasa/metabolismo , Inmunohistoquímica , Insulina/metabolismo , Cinética , Metabolismo de los Lípidos , Masculino , Músculo Esquelético/metabolismo , Músculos/metabolismo , Fosforilación , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3 , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Factores de Tiempo , Transactivadores , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA