Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Neuroendocrinology ; 112(1): 51-67, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33550289

RESUMEN

The estrous cycle is caused by the changing concentration of ovarian hormones, particularly 17ß-estradiol, a hormone whose effect on excitatory circuits has been extensively reported. However, fewer studies have tried to elucidate how this cycle, or this hormone, affects the plasticity of inhibitory networks and the structure of interneurons. Among these cells, somatostatin-expressing O-LM neurons of the hippocampus are especially interesting. They have a role in the modulation of theta oscillations, and they receive direct input from the entorhinal cortex, which place them in the center of hippocampal function. In this study, we report that the expression of polysialylated form of the neural cell adhesion molecule (PSA-NCAM) in the hippocampus, a molecule involved in the plasticity of somatostatin-expressing interneurons in the adult brain, fluctuated through the different stages of the estrous cycle. Likewise, these stages and the expression of PSA-NCAM affected the density of dendritic spines of O-LM cells. We also describe that 17ß-estradiol replacement of adult ovariectomized female mice caused an increase in the perisomatic inhibitory puncta in O-LM interneurons as well as an increase in their axonal bouton density. Interestingly, this treatment also induced a decrease in their dendritic spine density, specifically in O-LM interneurons lacking PSA-NCAM expression. Finally, using an ex vivo real-time assay with entorhinal-hippocampal organotypic cultures, we show that this hormone decreased the dynamics in spinogenesis, altogether highlighting the modulatory effect that 17ß-estradiol has on inhibitory circuits.


Asunto(s)
Corteza Entorrinal/fisiología , Estradiol/metabolismo , Hipocampo/fisiología , Interneuronas/fisiología , Red Nerviosa/fisiología , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Ácidos Siálicos/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/fisiología , Corteza Entorrinal/citología , Corteza Entorrinal/metabolismo , Femenino , Hipocampo/citología , Hipocampo/metabolismo , Interneuronas/metabolismo , Ratones , Ratones Transgénicos , Red Nerviosa/metabolismo , Ovariectomía , Somatostatina/metabolismo
2.
J Neurosci ; 40(26): 5008-5018, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32457072

RESUMEN

Parvalbumin-expressing (PV+) interneurons play a key role in the maturation and synchronization of cortical circuitry and alterations in these inhibitory neurons, especially in the medial prefrontal cortex (mPFC), have been found in different psychiatric disorders. The formation of perineuronal nets (PNNs) around many of these interneurons at the end of the critical periods reduces their plasticity and sets their connectivity. Consequently, the presence of PNNs must have an important impact on the synaptic input and the physiology of PV+ cells. In the present study, we have found that in adult male mice, prefrontocortical PV+ cells surrounded by PNNs show higher density of perisomatic excitatory and inhibitory puncta, longer axonal initial segments (AISs), and higher PV expression when compared with PV+ cells lacking PNNs. In order to better understand the impact of PNNs on the connectivity and physiology of PV+ interneurons in the mPFC, we have digested enzymatically these structures and have found a decrease in the density of inhibitory puncta on their perisomatic region but not on the PV+ perisomatic puncta on pyramidal neurons. Moreover, extracellular recordings show that the digestion of PNNs induces a decrease in γ activity, an oscillation dependent on PV+ cells, in the mPFC of anesthetized mice. Our results suggest that the presence of PNNs enwrapping PV+ cells regulates their inhibitory input and has a potent influence on their activity. These results may be relevant for psychiatric research, given the alterations in PNNs, PV+ interneurons and their physiology described in different mental disorders.SIGNIFICANCE STATEMENT Parvalbumin-expressing (PV+) interneurons are surrounded by specializations of the extracellular matrix, the perineuronal nets (PNNs). PNNs regulate the development and plasticity of PV+ cells and, consequently, their presence must influence their synaptic input and physiology. We have found, in the adult prefrontal cortex (PFC), substantial differences in the structure and connectivity of PV+ interneurons depending on the presence of PNNs. The depletion of PNNs from the PFC has also a potent effect on the connectivity of PV+ cells and on neural oscillations that depend on these cells. These findings are relevant to understand the role of PNNs in the adult brain and in certain psychiatric disorders in which alterations in PNNs and PV+ interneurons have been described.


Asunto(s)
Matriz Extracelular , Ritmo Gamma/fisiología , Interneuronas/fisiología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Parvalbúminas
3.
Cereb Cortex ; 26(3): 1287-94, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26637448

RESUMEN

Inputs to sensory cortices are known to compete for target innervation through an activity-dependent mechanism during critical periods. To investigate whether this principle also applies to association cortices such as the medial prefrontal cortex (mPFC), we produced a bilateral lesion during early development to the ventral hippocampus (vHC), an input to the mPFC, and analyzed the intensity of the projection from another input, the basolateral amgydala (BLA). We found that axons from the BLA had a higher density of "en passant" boutons in the mPFC of lesioned animals. Furthermore, the density of neurons labeled with retrograde tracers was increased, and neurons projecting from the BLA to the mPFC showed increased expression of FosB. Since neonatal ventral hippocampal lesion has been used as an animal model of schizophrenia, we investigated its effects on behavior and found a negative correlation between the density of retrogradely labeled neurons in the BLA and the reduction of the startle response in the prepulse inhibition test. Our results not only indicate that the inputs from the BLA and the vHC compete for target innervation in the mPFC during postnatal development but also that subsequent abnormal rewiring might underlie the pathophysiology of neuropsychiatric disorders such as schizophrenia.


Asunto(s)
Complejo Nuclear Basolateral/citología , Hipocampo/citología , Neuronas/citología , Corteza Prefrontal/citología , Animales , Complejo Nuclear Basolateral/fisiología , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Hipocampo/fisiología , Hipocampo/fisiopatología , Ácido Iboténico , Inmunohistoquímica , Microscopía Confocal , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/fisiología , Corteza Prefrontal/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Long-Evans , Filtrado Sensorial/fisiología
4.
Cereb Cortex ; 24(11): 3014-24, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23780867

RESUMEN

Excitatory neurons undergo dendritic spine remodeling in response to different stimuli. However, there is scarce information about this type of plasticity in interneurons. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is a good candidate to mediate this plasticity as it participates in neuronal remodeling and is expressed by some mature cortical interneurons, which have reduced dendritic arborization, spine density, and synaptic input. To study the connectivity of the dendritic spines of interneurons and the influence of PSA-NCAM on their dynamics, we have analyzed these structures in a subpopulation of fluorescent spiny interneurons in the hippocampus of glutamic acid decarboxylase-enhanced green fluorescent protein transgenic mice. Our results show that these spines receive excitatory synapses. The depletion of PSA in vivo using the enzyme Endo-Neuraminidase-N (Endo-N) increases spine density when analyzed 2 days after, but decreases it 7 days after. The dendritic spine turnover was also analyzed in real time using organotypic hippocampal cultures: 24 h after the addition of EndoN, we observed an increase in the apparition rate of spines. These results indicate that dendritic spines are important structures in the control of the synaptic input of hippocampal interneurons and suggest that PSA-NCAM is relevant in the regulation of their morphology and connectivity.


Asunto(s)
Espinas Dendríticas/metabolismo , Regulación de la Expresión Génica/fisiología , Interneuronas/ultraestructura , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/fisiología , Ácidos Siálicos/metabolismo , Ácidos Siálicos/fisiología , Animales , Animales Recién Nacidos , Calbindina 2/metabolismo , Colecistoquinina/metabolismo , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/ultraestructura , Regulación de la Expresión Génica/efectos de los fármacos , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/efectos de los fármacos , Neuraminidasa/farmacología , Técnicas de Cultivo de Órganos , Somatostatina/metabolismo , Factores de Tiempo , Péptido Intestinal Vasoactivo/metabolismo
5.
Int J Neuropsychopharmacol ; 17(10): 1635-46, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24786752

RESUMEN

Novel hypotheses suggest that antidepressants, such as the selective serotonin reuptake inhibitor fluoxetine, induce neuronal structural plasticity, resembling that of the juvenile brain, although the underlying mechanisms of this reopening of the critical periods still remain unclear. However, recent studies suggest that inhibitory networks play an important role in this structural plasticity induced by fluoxetine. For this reason we have analysed the effects of a chronic fluoxetine treatment in the hippocampus and medial prefrontal cortex (mPFC) of transgenic mice displaying eGFP labelled interneurons. We have found an increase in the expression of molecules related to critical period plasticity, such as the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), GAD67/65 and synaptophysin, as well as a reduction in the number of parvalbumin expressing interneurons surrounded by perineuronal nets. We have also described a trend towards decrease in the perisomatic inhibitory puncta on pyramidal neurons in the mPFC and an increase in the density of inhibitory puncta on eGFP interneurons. Finally, we have found that chronic fluoxetine treatment affects the structure of interneurons in the mPFC, increasing their dendritic spine density. The present study provides evidence indicating that fluoxetine promotes structural changes in the inhibitory neurons of the adult cerebral cortex, probably through alterations in plasticity-related molecules of neurons or the extracellular matrix surrounding them, which are present in interneurons and are known to be crucial for the development of the critical periods of plasticity in the juvenile brain.


Asunto(s)
Antidepresivos de Segunda Generación/farmacología , Corteza Cerebral/citología , Fluoxetina/farmacología , Interneuronas/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Animales , Recuento de Células , Espinas Dendríticas/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Interneuronas/citología , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Parvalbúminas/genética , Parvalbúminas/metabolismo , Ácidos Siálicos/metabolismo , Factores de Tiempo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
6.
Neurochem Res ; 38(6): 1122-33, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23354722

RESUMEN

Neuronal structural plasticity is known to have a major role in cognitive processes and in the response of the CNS to aversive experiences. This type of plasticity involves processes ranging from neurite outgrowth/retraction or dendritic spine remodeling, to the incorporation of new neurons to the established circuitry. However, the study of how these structural changes take place has been focused mainly on excitatory neurons, while little attention has been paid to interneurons. The exploration of these plastic phenomena in interneurons is very important, not only for our knowledge of CNS physiology, but also for understanding better the etiology of different psychiatric and neurological disorders in which alterations in the structure and connectivity of inhibitory networks have been described. Here we review recent work on the structural remodeling of interneurons in the adult brain, both in basal conditions and after chronic stress or sensory deprivation. We also describe studies from our laboratory and others on the putative mediators of this interneuronal structural plasticity, focusing on the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). This molecule is expressed by some interneurons in the adult CNS and, through its anti-adhesive and insulating properties, may participate in the remodeling of their structure. Finally, we review recent findings on the possible implication of PSA-NCAM on the remodeling of inhibitory neurons in certain psychiatric disorders and their treatments.


Asunto(s)
Interneuronas/fisiología , Moléculas de Adhesión de Célula Nerviosa/biosíntesis , Plasticidad Neuronal/fisiología , Adulto , Amígdala del Cerebelo/fisiología , Animales , Espinas Dendríticas/fisiología , Dopamina/fisiología , Humanos , Interneuronas/ultraestructura , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis/fisiología , Fenotipo , Corteza Prefrontal/metabolismo , Esquizofrenia/fisiopatología , Ácidos Siálicos/metabolismo , Transmisión Sináptica/fisiología
7.
Neural Plast ; 2013: 605079, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936678

RESUMEN

The nervous system is highly sensitive to experience during early postnatal life, but this phase of heightened plasticity decreases with age. Recent studies have demonstrated that developmental-like plasticity can be reactivated in the visual cortex of adult animals through environmental or pharmacological manipulations. These findings provide a unique opportunity to study the cellular and molecular mechanisms of adult plasticity. Here we used the monocular deprivation paradigm to investigate large-scale gene expression patterns underlying the reinstatement of plasticity produced by fluoxetine in the adult rat visual cortex. We found changes, confirmed with RT-PCRs, in gene expression in different biological themes, such as chromatin structure remodelling, transcription factors, molecules involved in synaptic plasticity, extracellular matrix, and excitatory and inhibitory neurotransmission. Our findings reveal a key role for several molecules such as the metalloproteases Mmp2 and Mmp9 or the glycoprotein Reelin and open up new insights into the mechanisms underlying the reopening of the critical periods in the adult brain.


Asunto(s)
Expresión Génica/fisiología , Plasticidad Neuronal/fisiología , Privación Sensorial/fisiología , Corteza Visual/fisiología , Animales , Fluoxetina/farmacología , Expresión Génica/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Long-Evans , Proteína Reelina , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Corteza Visual/efectos de los fármacos
8.
Neuropsychopharmacology ; 48(7): 1021-1030, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36944718

RESUMEN

Critical period-like plasticity (iPlasticity) can be reinstated in the adult brain by several interventions, including drugs and optogenetic modifications. We have demonstrated that a combination of iPlasticity with optimal training improves behaviors related to neuropsychiatric disorders. In this context, the activation of TrkB, a receptor for BDNF, in Parvalbumin-positive (PV+) interneurons has a pivotal role in cortical network changes. However, it is unknown if the activation of TrkB in PV+ interneurons is important for other plasticity-related behaviors, especially for learning and memory. Here, using mice with heterozygous conditional TrkB deletion in PV+ interneurons (PV-TrkB hCKO) in IntelliCage and fear erasure paradigms, we show that chronic treatment with fluoxetine, a widely prescribed antidepressant drug that is known to promote the activation of TrkB, enhances behavioral flexibility in spatial and fear memory, largely depending on the expression of the TrkB receptor in PV+ interneurons. In addition, hippocampal long-term potentiation was enhanced by chronic treatment with fluoxetine in wild-type mice, but not in PV-TrkB hCKO mice. Transcriptomic analysis of PV+ interneurons after fluoxetine treatment indicated intrinsic changes in synaptic formation and downregulation of enzymes involved in perineuronal net formation. Consistently, immunohistochemistry has shown that the fluoxetine treatment alters PV expression and reduces PNNs in PV+ interneurons, and here we show that TrkB expression in PV+ interneurons is required for these effects. Together, our results provide molecular and network mechanisms for the induction of critical period-like plasticity in adulthood.


Asunto(s)
Parvalbúminas , Aprendizaje Inverso , Ratones , Animales , Parvalbúminas/metabolismo , Fluoxetina/farmacología , Receptor trkB/metabolismo , Interneuronas/fisiología , Miedo , Antidepresivos/farmacología , Antidepresivos/metabolismo
9.
BMC Neurosci ; 13: 5, 2012 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-22221403

RESUMEN

BACKGROUND: Antidepressants promote neuronal structural plasticity in young-adult rodents, but little is known of their effects on older animals. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) may mediate these structural changes through its anti-adhesive properties. PSA-NCAM is expressed in immature neurons and in a subpopulation of mature interneurons and its expression is modulated by antidepressants in the telencephalon of young-adult rodents. RESULTS: We have analyzed the effects of 14 days of fluoxetine treatment on the density of puncta expressing PSA-NCAM and different presynaptic markers in the medial prefrontal cortex, hippocampus and amygdala of middle-aged (8 months old) rats. The density of puncta expressing PSA-NCAM increased in the dorsal cingulate cortex, as well as in different hippocampal and amygdaloid regions. In these later regions there were also increases in the density of puncta expressing glutamic acid decarboxylase 65/67 (GAD6), synaptophysin (SYN), PSA-NCAM/SYN and PSA-NCAM/GAD6, but a decrease of those expressing vesicular glutamate transporter 1 (VGluT1). Since there is controversy on the effects of antidepressants on neurogenesis during aging, we analyzed the number of proliferating cells expressing Ki67 and that of immature neurons expressing doublecortin or PSA-NCAM. No significant changes were found in the subgranular zone, but the number of proliferating cells decreased in the subventricular zone. CONCLUSIONS: These results indicate that the effects of fluoxetine in middle-aged rats are different to those previously described in young-adult animals, being more restricted in the mPFC and even following an opposite direction in the amygdala or the subventricular zone.


Asunto(s)
Antidepresivos de Segunda Generación/farmacología , Fluoxetina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis/efectos de los fármacos , Ácidos Siálicos/metabolismo , Telencéfalo/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Recuento de Células , Proliferación Celular/efectos de los fármacos , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Glutamato Descarboxilasa/metabolismo , Antígeno Ki-67/metabolismo , Ventrículos Laterales/citología , Ventrículos Laterales/efectos de los fármacos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/genética , Neuropéptidos/metabolismo , Ratas , Ratas Wistar , Ácidos Siálicos/genética , Sinaptofisina/metabolismo , Telencéfalo/citología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
10.
Cereb Cortex ; 21(5): 1028-41, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20843898

RESUMEN

Principal neurons in the adult cerebral cortex undergo synaptic, dendritic, and spine remodeling in response to different stimuli, and several reports have demonstrated that the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) participates in these plastic processes. However, there is only limited information on the expression of this molecule on interneurons and on its role in the structural plasticity of these cells. We have found that PSA-NCAM is expressed in mature interneurons widely distributed in all the extension of the cerebral cortex and have excluded the expression of this molecule in most principal cells. Although PSA-NCAM expression is generally considered a marker of immature neurons, birth-dating analyses reveal that these interneurons do not have an adult or perinatal origin and that they are generated during embryonic development. PSA-NCAM expressing interneurons show reduced density of perisomatic and peridendritic puncta expressing different synaptic markers and receive less perisomatic synapses, when compared with interneurons lacking this molecule. Moreover, they have reduced dendritic arborization and spine density. These data indicate that PSA-NCAM expression is important for the connectivity of interneurons in the adult cerebral cortex and that its regulation may play an important role in the structural plasticity of inhibitory networks.


Asunto(s)
Diferenciación Celular/genética , Corteza Cerebral/metabolismo , Interneuronas/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/genética , Inhibición Neural/genética , Ácidos Siálicos/genética , Animales , Forma de la Célula/genética , Corteza Cerebral/patología , Interneuronas/patología , Masculino , Molécula L1 de Adhesión de Célula Nerviosa/biosíntesis , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Neurogénesis/genética , Plasticidad Neuronal/genética , Ratas , Ratas Sprague-Dawley , Ácidos Siálicos/biosíntesis
11.
Artículo en Inglés | MEDLINE | ID: mdl-35066055

RESUMEN

The effects of intense stressors can last a long time and may lead to the development of psychiatric disorders, including posttraumatic stress disorder. The basolateral amygdala (BLA) plays a critical role in these diseases and is extremely sensitive to stress. Here, we explored in male and female mice the long-term (35 days) impact of a 24-h restraint stress on BLA circuitry. We used Thy1-YFP mice to discriminate 2 subpopulations of excitatory neurons, which participate in "Fear-On" (Thy1-) and "Fear-Off" (Thy1+) circuits. The stress decreased the density of parvalbumin (PV) + inhibitory neurons in both sexes but did not alter their dendritic complexity. We also analyzed the perisomatic input of basket interneurons on Thy1+ and Thy1- neurons, finding sex dependent effects. In males, we did not find alterations in the density of PV+ puncta or in that of cannabinoid receptor 1 (CB1R) + puncta from cholecystokinin+ basket cells. By contrast, in females we found increased the density of PV+ puncta on Thy1+ neurons and reduced on the Thy1- neurons. This adverse experience also reduced in the long term the density of CB1R+ puncta both on Thy1+ and Thy1- cells in females. The expression of the activity marker FosB was not altered in PV+ interneurons and in Thy1+ neurons of stressed animals. The density of perineuronal nets, a specialized region of the extracellular matrix, which covers particularly PV+ interneurons and regulates their connectivity, was increased by stress in male mice. Our findings indicate that a single stressful event can produce long-term alterations in the inhibitory circuits of the BLA, especially on PV+ neurons and their plasticity, and that there is a differential impact depending on the sex and the fear-related circuits involved.


Asunto(s)
Complejo Nuclear Basolateral/metabolismo , Miedo/fisiología , Inmunohistoquímica , Interneuronas/metabolismo , Restricción Física/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Parvalbúminas/metabolismo , Factores Sexuales
12.
Neurobiol Stress ; 19: 100460, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35734023

RESUMEN

This manuscript is dedicated to the memory of Bruce S. McEwen, to commemorate the impact he had on how we understand stress and neuronal plasticity, and the profound influence he exerted on our scientific careers. The focus of this review is the impact of stressors on inhibitory circuits, particularly those of the limbic system, but we also consider other regions affected by these adverse experiences. We revise the effects of acute and chronic stress during different stages of development and lifespan, taking into account the influence of the sex of the animals. We review first the influence of stress on the physiology of inhibitory neurons and on the expression of molecules related directly to GABAergic neurotransmission, and then focus on specific interneuron subpopulations, particularly on parvalbumin and somatostatin expressing cells. Then we analyze the effects of stress on molecules and structures related to the plasticity of inhibitory neurons: the polysialylated form of the neural cell adhesion molecule and perineuronal nets. Finally, we review the potential of antidepressants or environmental manipulations to revert the effects of stress on inhibitory circuits.

13.
J Comp Neurol ; 528(8): 1349-1366, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31792992

RESUMEN

Several experimental manipulations, including visual deprivation, are able to induce critical period-like plasticity in the visual cortex of adult animals. In this regard, many studies have analyzed the effects of dark exposure in adult animals, but still little is known about the role of interneurons and plasticity-related molecules on such mechanisms. In this study, we analyzed the effects of 10 days of dark exposure on the connectivity and structure of interneurons, both in the primary visual cortex and in the rest of cerebral regions implicated in the transmission of visual stimulus. We found that this environmental manipulation induces changes in the expression of synaptic molecules throughout the visual pathway and in the structure of interneurons in the primary visual cortex. Moreover, we found altered expression in the polysialylated form of the neural cell adhesion molecule and in perineuronal nets surrounding parvalbumin expressing interneurons, suggesting that these plasticity-related molecules may be involved in the changes produced by dark exposure. Together, our findings indicate that dark exposure produces an important alteration of inhibitory circuits and molecules related to their plasticity, not only in the visual cortex but throughout the visual pathway.


Asunto(s)
Oscuridad/efectos adversos , Interneuronas/metabolismo , Red Nerviosa/metabolismo , Plasticidad Neuronal/fisiología , Privación Sensorial/fisiología , Corteza Visual/metabolismo , Factores de Edad , Animales , Interneuronas/química , Masculino , Ratones , Ratones Transgénicos , Red Nerviosa/química , Red Nerviosa/crecimiento & desarrollo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Ácidos Siálicos/metabolismo , Corteza Visual/química , Corteza Visual/crecimiento & desarrollo
14.
Transl Psychiatry ; 10(1): 177, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32488050

RESUMEN

The prefrontal cortex (PFC) continues its development during adolescence and alterations in its structure and function, particularly of inhibitory networks, have been detected in schizophrenic patients. Since cannabis use during adolescence is a risk factor for this disease, our main objective was to investigate whether THC administration during this period might exacerbate alterations in prefrontocortical inhibitory networks in mice subjected to a perinatal injection of MK801 and postweaning social isolation. This double-hit model (DHM) combines a neurodevelopmental manipulation and the exposure to an aversive experience during early life; previous work has shown that DHM mice have important alterations in the structure and connectivity of PFC interneurons. In the present study we found that DHM had reductions in prepulse inhibition of the startle reflex (PPI), GAD67 expression and cingulate 1 cortex volume. Interestingly, THC by itself induced increases in PPI and decreases in the dendritic complexity of somatostatin expressing interneurons. Both THC and DHM reduced the density of parvalbumin expressing cells surrounded by perineuronal nets and, when combined, they disrupted the ratio between the density of puncta expressing excitatory and inhibitory markers. Our results support previous work showing alterations in parameters involving interneurons in similar animal models and schizophrenic patients. THC treatment does not modify further these parameters, but changes some others related also to interneurons and their plasticity, in some cases in the opposite direction to those induced by the DHM, suggesting a protective effect.


Asunto(s)
Dronabinol , Receptores de N-Metil-D-Aspartato , Adolescente , Adulto , Animales , Dronabinol/farmacología , Humanos , Interneuronas/metabolismo , Ratones , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Aislamiento Social
15.
Front Behav Neurosci ; 14: 51, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32317945

RESUMEN

The medial prefrontal cortex (mPFC) has been classically defined as the brain region responsible for higher cognitive functions, including the decision-making process. Ample information has been gathered during the last 40 years in an attempt to understand how it works. We now know extensively about the connectivity of this region and its relationship with neuromodulatory ascending projection areas, such as the dorsal raphe nucleus (DRN) or the ventral tegmental area (VTA). Both areas are well-known regulators of the reward-based decision-making process and hence likely to be involved in processes like evidence integration, impulsivity or addiction biology, but also in helping us to predict the valence of our future actions: i.e., what is "good" and what is "bad." Here we propose a hypothesis of a critical period, during which the inputs of the mPFC compete for target innervation, establishing specific prefrontal network configurations in the adult brain. We discuss how these different prefrontal configurations are linked to brain diseases such as addiction or neuropsychiatric disorders, and especially how drug abuse and other events during early life stages might lead to the formation of more vulnerable prefrontal network configurations. Finally, we show different promising pharmacological approaches that, when combined with the appropriate stimuli, will be able to re-establish these functional prefrontocortical configurations during adulthood.

16.
Cereb Cortex ; 18(10): 2229-40, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18245040

RESUMEN

New neurons in the adult brain transiently express molecules related to neuronal development, such as the polysialylated form of neural cell adhesion molecule, or doublecortin (DCX). These molecules are also expressed by a cell population in the rat paleocortex layer II, whose origin, phenotype, and function are not clearly understood. We have classified most of these cells as a new cell type termed tangled cell. Some cells with the morphology of semilunar-pyramidal transitional neurons were also found among this population, as well as some scarce cells resembling semilunar, pyramidal. and fusiform neurons. We have found that none of these cells in layer II express markers of glial cells, mature, inhibitory, or principal neurons. They appear to be in a prolonged immature state, confirmed by the coexpression of DCX, TOAD/Ulip/CRMP-4, A3 subunit of the cyclic nucleotide-gated channel, or phosphorylated cyclic adenosine monophosphate response element-binding protein. Moreover, most of them lack synaptic contacts, are covered by astroglial lamellae, and fail to express cellular activity markers, such as c-Fos or Arc, and N-methyl-d-aspartate or glucocorticoid receptors. We have found that none of these cells appear to be generated during adulthood or early youth and that most of them have been generated during embryonic development, mainly in E15.5.


Asunto(s)
Corteza Entorrinal/citología , Corteza Entorrinal/embriología , Neurogénesis/fisiología , Células Piramidales/citología , Células Madre/citología , Factores de Edad , Animales , Antimetabolitos/farmacología , Biomarcadores/metabolismo , Bromodesoxiuridina/farmacología , Proteína Doblecortina , Femenino , Inmunofenotipificación , Masculino , Ratones , Ratones Endogámicos , Microscopía Electrónica , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Embarazo , Células Piramidales/metabolismo , Células Piramidales/ultraestructura , Ratas , Ratas Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ácidos Siálicos/metabolismo , Células Madre/metabolismo
17.
Int J Bipolar Disord ; 7(1): 24, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31728775

RESUMEN

BACKGROUND: Alterations in the structure and physiology of interneurons in the prefrontal cortex (PFC) are important factors in the etiopathology of different psychiatric disorders. Among the interneuronal subpopulations, parvalbumin (PV) expressing cells appear to be specially affected. Interestingly, during development and adulthood the connectivity of these interneurons is regulated by the presence of perineuronal nets (PNNs), specialized regions of the extracellular matrix, which are frequently surrounding PV expressing neurons. Previous reports have found anomalies in the density of PNNs in the PFC of schizophrenic patients. However, although some studies have described alterations in PNNs in some extracortical regions of bipolar disorder patients, there are no studies focusing on the prefrontocortical PNNs of bipolar or major depression patients. For this reason, we have analyzed the density of PNNs in post-mortem sections of the dorsolateral PFC (DLPFC) from the Stanley Neuropathology Consortium, which includes controls, schizophrenia, bipolar and major depression patients. RESULTS: We have not observed differences in the distribution of PV+ cells or PNNs, or in the percentage of PV+ interneurons surrounded by PNNs. The density of PV+ interneurons was similar in all the experimental groups, but there was a significantly lower density of PNNs in the DLPFC of bipolar disorder patients and a tendency towards a decrease in schizophrenic patients. No differences were found when evaluating the density of PV+ cells surrounded by PNNs. Interestingly, when assessing the influence of demographic data, we found an inverse correlation between the density of PNNs and the presence of psychosis. CONCLUSIONS: The present results point to prefrontocortical PNNs and their role in the regulation of neuronal plasticity as putative players in the etiopathology of bipolar disorder and schizophrenia. Our findings also suggest a link between these specialized regions of the extracellular matrix and the presence of psychosis.

18.
Front Cell Neurosci ; 13: 197, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31133813

RESUMEN

Chronic stress has an important impact on the adult brain. However, most of the knowledge on its effects is focused on principal neurons and less on inhibitory neurons. Consequently, recent reports have begun to describe stress-induced alterations in the structure, connectivity and neurochemistry of interneurons. Some of these changes appear to be mediated by certain molecules particularly associated to interneurons, such as the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) and components of the perineuronal nets (PNN), specialized regions of the extracellular matrix. These plasticity-related molecules modulate interneuronal structure and connectivity, particularly of parvalbumin expressing basket interneurons, both during development and adult life. These inhibitory neurons are specially affected after chronic stress and in some stress-related disorders, in which the expression of PSA-NCAM and certain components of PNN are also altered. For these reasons we have decided to study PSA-NCAM, PNN and parvalbumin expressing interneurons after 10 days of chronic restraint stress, a time point in which its behavioral consequences are starting to appear. We have focused initially on the medial prefrontal cortex (mPFC), basolateral amygdala (BLA) and hippocampus, regions affected by stress and stress-related psychiatric diseases, but we have also explored the habenula and the thalamic reticular nucleus (TRN) due to the important presence of PNN and their relationship with certain disorders. PSA-NCAM expression was increased by stress in the stratum lacunosum-moleculare of CA1. Increases in parvalbumin immunoreactive cells were detected in the mPFC and the BLA, but were not accompanied by increases in the number of parvalbumin expressing perisomatic puncta on the somata of principal neurons. The number of PNN was also increased in the mPFC and the habenula, although habenular PNN were not associated to parvalbumin cells. Increased expression of parvalbumin and components of PNN were also detected in the TRN after chronic restraint stress, revealing for the first time substantial effects on this region. Our study shows that, even a short chronic stress protocol, can induce consistent changes in interneuronal plasticity-related molecules in cortical and extracortical regions, which may represent initial responses of inhibitory circuits to counteract the effects of this aversive experience.

19.
Neuroscience ; 386: 205-213, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30018016

RESUMEN

Although the precise mechanism of action of antidepressant drugs remains elusive, the neuroplastic hypothesis has gained acceptance during the last two decades. Several studies have shown that treatment with antidepressants such as Fluoxetine is associated with enhanced plasticity in control animals, especially in regions such as the visual cortex, the hippocampus and the medial prefrontal cortex. More recently, the basolateral amygdala has been shown to be affected by Fluoxetine leading to a reopening of critical period-like plasticity in the fear and aggression circuits. One of the key elements triggering this type of brain plasticity are inhibitory networks, especially parvalbumin interneurons. However, recent work on fast-acting antidepressants has shown also an important role for somatostatin interneurons. Here we show that Fluoxetine reorganizes inhibitory circuits through increased expression of the plasticity-related molecule PSA-NCAM which regulates interneuronal structure and connectivity. In addition, we demonstrate that treatment with this antidepressant alters the structure of somatostatin interneurons both at the level of dendritic spines and of axonal en passant boutons. Our findings suggest that new strategies targeting somatostatin interneuron activity might help us to better understand depression and the action of antidepressants.


Asunto(s)
Antidepresivos/farmacología , Complejo Nuclear Basolateral/metabolismo , Fluoxetina/farmacología , Interneuronas/metabolismo , Somatostatina/metabolismo , Animales , Complejo Nuclear Basolateral/efectos de los fármacos , Interneuronas/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología
20.
Heliyon ; 4(6): e00669, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30003163

RESUMEN

The quantification of the expression of different molecules is a key question in both basic and applied sciences. While protein quantification through molecular techniques leads to the loss of spatial information and resolution, immunohistochemistry is usually associated with time-consuming image analysis and human bias. In addition, the scarce automatic software analysis is often proprietary and expensive and relies on a fixed threshold binarization. Here we describe and share a set of macros ready for automated fluorescence analysis of large batches of fixed tissue samples using FIJI/ImageJ. The quantification of the molecules of interest are based on an automatic threshold analysis of immunofluorescence images to automatically identify the top brightest structures of each image. These macros measure several parameters commonly quantified in basic neuroscience research, such as neuropil density and fluorescence intensity of synaptic puncta, perisomatic innervation and col-localization of different molecules and analysis of the neurochemical phenotype of neuronal subpopulations. In addition, these same macro functions can be easily modified to improve similar analysis of fluorescent probes in human biopsies for diagnostic purposes based on the expression patterns of several molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA