Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(8): 5106-5116, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33759504

RESUMEN

Suspended particulate matter (SPM) plays an important role in the fate of organic micropollutants in rivers during rain events, when sediments are remobilized and turbid runoff components enter the rivers. Under baseflow conditions, the SPM concentration is low and the contribution of SPM-bound contaminants to the overall risk of organic contaminants in rivers is assumed to be negligible. To challenge this assumption, we explored if SPM may act as a source or sink for all or specific groups of organic chemicals in a small river. The concentrations of over 600 contaminants and the mixture effects stemming from all chemicals in in vitro bioassays were measured for river water, SPM, and the surface sediment after solid-phase extraction or exhaustive solvent extraction. The bioavailable fractions of chemicals and mixture effects were estimated after passive equilibrium sampling of enriched SPM slurries and sediments in the lab. Dissolved compounds dominated the total chemical burden in the water column (water plus SPM) of the river, whereas SPM-bound chemicals contributed up to 46% of the effect burden even if the SPM concentration in rivers was merely 1 mg/L. The equilibrium between water and SPM was still not reached under low-flow conditions with SPM as a source of water contamination. The ratios of SPM-associated to sediment-associated neutral and hydrophobic chemicals as well as the ratios of the mixture effects expressed as bioanalytical equivalent concentrations were close to 1, suggesting that the surface sediment can be used as a proxy for SPM under baseflow conditions when the sampling of a large amount of water to obtain sufficient SPM cannot be realized.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Agua Dulce , Sedimentos Geológicos , Material Particulado/análisis , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Technol ; 54(13): 8280-8290, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32501680

RESUMEN

Rain events may impact the chemical pollution burden in rivers. Forty-four small streams in Germany were profiled during several rain events for the presence of 395 chemicals and five types of mixture effects in in vitro bioassays (cytotoxicity; activation of the estrogen, aryl hydrocarbon, and peroxisome proliferator-activated receptors; and oxidative stress response). While these streams were selected to cover a wide range of agricultural impacts, in addition to the expected pesticides, wastewater-derived chemicals and chemicals typical for street runoff were detected. The unexpectedly high estrogenic effects in many samples indicated the impact by wastewater or overflow of combined sewer systems. The 128 water samples exhibited a high diversity of chemical and effect patterns, even for different rain events at the same site. The detected 290 chemicals explained only a small fraction (<8%) of the measured effects. The experimental effects of the designed mixtures of detected chemicals that were expected to dominate the mixture effects of detected chemicals were consistent with predictions for concentration addition within a factor of two for 94% of the mixtures. Overall, the burden of chemicals and effects was much higher than that previously detected in surface water during dry weather, with the effects often exceeding proposed effect-based trigger values.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Bioensayo , Monitoreo del Ambiente , Alemania , Lluvia , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
3.
Environ Sci Technol ; 49(16): 10048-56, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26196040

RESUMEN

Aquatic ecosystems are often contaminated with large numbers of chemicals, which cannot be sufficiently addressed by chemical target analyses. Effect-directed analysis (EDA) enables the identification of toxicants in complex contaminated environmental samples. This study suggests pollution-induced community tolerance (PICT) as a confirmation tool for EDA to identify contaminants which actually impact on local communities. The effects of three phytotoxic compounds local periphyton communities, cultivated at a reference (R-site) and a polluted site (P-site), were assessed to confirm the findings of a former EDA study on sediments. The sensitivities of R- and P-communities to prometryn, tributyltin (TBT) and N-phenyl-2-naphthylamine (PNA) were quantified in short-term toxicity tests and exposure concentrations were determined. Prometryn and PNA concentrations were significantly higher at the P-site, whereas TBT concentrations were in the same range at both sites. Periphyton communities differed in biomass, but algal class composition and diatom diversity were similar. Community tolerance of P-communities was significantly enhanced for prometryn, but not for PNA and TBT, confirming site-specific effects on local periphyton for prometryn only. Thus, PICT enables in situ effect confirmation of phytotoxic compounds at the community level and seems to be suitable to support confirmation and enhance ecological realism of EDA.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Sustancias Peligrosas/análisis , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/análisis , 2-Naftilamina/análogos & derivados , 2-Naftilamina/toxicidad , Diatomeas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Pruebas de Toxicidad , Compuestos de Trialquiltina/toxicidad
4.
Water Res ; 201: 117262, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34118650

RESUMEN

Despite elaborate regulation of agricultural pesticides, their occurrence in non-target areas has been linked to adverse ecological effects on insects in several field investigations. Their quantitative role in contributing to the biodiversity crisis is, however, still not known. In a large-scale study across 101 sites of small lowland streams in Central Europe, Germany we revealed that 83% of agricultural streams did not meet the pesticide-related ecological targets. For the first time we identified that agricultural nonpoint-source pesticide pollution was the major driver in reducing vulnerable insect populations in aquatic invertebrate communities, exceeding the relevance of other anthropogenic stressors such as poor hydro-morphological structure and nutrients. We identified that the current authorisation of pesticides, which aims to prevent unacceptable adverse effects, underestimates the actual ecological risk as (i) measured pesticide concentrations exceeded current regulatory acceptable concentrations in 81% of the agricultural streams investigated, (ii) for several pesticides the inertia of the authorisation process impedes the incorporation of new scientific knowledge and (iii) existing thresholds of invertebrate toxicity drivers are not protective by a factor of 5.3 to 40. To provide adequate environmental quality objectives, the authorisation process needs to include monitoring-derived information on pesticide effects at the ecosystem level. Here, we derive such thresholds that ensure a protection of the invertebrate stream community.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Agricultura , Animales , Ecosistema , Monitoreo del Ambiente , Europa (Continente) , Alemania , Insectos , Invertebrados , Plaguicidas/análisis , Ríos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
Environ Pollut ; 155(1): 52-60, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18068881

RESUMEN

Passive sampling is a powerful method for continuous pollution monitoring, but calibration experiments are still needed to generate sampling rates in order to estimate water concentrations for polar compounds. We calibrated the Chemcatcher device with an uncovered SDB-XC Empore disk as receiving phase for 12 polar and semi-polar pesticides in aquatic environments in flow-through tank experiments at two water flow velocities (0.135 m/s and 0.4 m/s). In the 14-day period of exposure the uptake of test substances in the sampler remained linear, and all derived sampling rates R(s) were in the range of 0.1 to 0.5 L/day. By additionally monitoring the release of two preloaded polar pesticides from the SDB-XC disks over time, very high variation in release kinetics was found, which calls into question the applicability of performance reference compounds. Our study expands the applicability of the Chemcatcher for monitoring trace concentrations of pesticides with frequent occurrence in water.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Calibración , Difusión , Monitoreo del Ambiente/métodos , Diseño de Equipo , Modelos Lineales , Movimientos del Agua
6.
Sci Total Environ ; 599-600: 387-399, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28478367

RESUMEN

We quantified pesticide contamination and its ecological impact up- and downstream of seven wastewater treatment plants (WWTPs) in rural and suburban areas of central Germany. During two sampling campaigns, time-weighted average pesticide concentrations (cTWA) were obtained using Chemcatcher® passive samplers; pesticide peak concentrations were quantified with event-driven samplers. At downstream sites, receiving waters were additionally grab sampled for five selected pharmaceuticals. Ecological effects on macroinvertebrate structure and ecosystem function were assessed using the biological indicator system SPEARpesticides (SPEcies At Risk) and leaf litter breakdown rates, respectively. WWTP effluents substantially increased insecticide and fungicide concentrations in receiving waters; in many cases, treated wastewater was the exclusive source for the neonicotinoid insecticides acetamiprid and imidacloprid in the investigated streams. During the ten weeks of the investigation, five out of the seven WWTPs increased in-stream pesticide toxicity by a factor of three. As a consequence, at downstream sites, SPEAR values and leaf litter degradation rates were reduced by 40% and 53%, respectively. The reduced leaf litter breakdown was related to changes in the macroinvertebrate communities described by SPEARpesticides and not to altered microbial activity. Neonicotinoids showed the highest ecological relevance for the composition of invertebrate communities, occasionally exceeding the Regulatory Acceptable Concentrations (RACs). In general, considerable ecological effects of insecticides were observed above and below regulatory thresholds. Fungicides, herbicides and pharmaceuticals contributed only marginally to acute toxicity. We conclude that pesticide retention of WWTPs needs to be improved.


Asunto(s)
Monitoreo del Ambiente , Invertebrados/efectos de los fármacos , Plaguicidas/análisis , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis , Animales , Ecosistema , Alemania , Neonicotinoides/análisis , Ríos , Aguas Residuales/análisis
7.
Sci Total Environ ; 524-525: 115-23, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25889550

RESUMEN

Pesticides impact invertebrate communities in freshwater ecosystems, leading to the loss of biodiversity and ecosystem functions. One approach to reduce such effects is to maintain uncontaminated stream reaches that can foster recovery of the impacted populations. We assessed the potential of uncontaminated forested headwaters to mitigate pesticide impact on the downstream macroinvertebrate communities in 37 streams, using the SPEARpesticides index. Pesticide contamination was measured with runoff-triggered techniques and Chemcatcher® passive samplers. The data originated from 3 field studies conducted between 1998 and 2011. The proportion of vulnerable species decreased significantly after pesticide exposure even at low toxicity levels (-4

Asunto(s)
Monitoreo del Ambiente , Bosques , Invertebrados/crecimiento & desarrollo , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Agricultura , Animales , Ecosistema , Invertebrados/clasificación , Ríos/química
8.
Sci Total Environ ; 537: 69-80, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26282741

RESUMEN

Pesticides negatively affect biodiversity and ecosystem function in aquatic environments. In the present study, we investigated the effects of pesticides on stream macroinvertebrates at 19 sites in a rural area dominated by forest cover and arable land in Central Germany. Pesticide exposure was quantified with Chemcatcher® passive samplers equipped with a diffusion-limiting membrane. Ecological effects on macroinvertebrate communities and on the ecosystem function detritus breakdown were identified using the indicator system SPEARpesticides and the leaf litter degradation rates, respectively. A decrease in the abundance of pesticide-vulnerable taxa and a reduction in leaf litter decomposition rates were observed at sites contaminated with the banned insecticide Carbofuran (Toxic Units≥-2.8), confirming the effect thresholds from previous studies. The results show that Chemcatcher® passive samplers with a diffusion-limiting membrane reliably detect ecologically relevant pesticide pollution, and we suggest Chemcatcher® passive samplers and SPEARpesticides as a promising combination to assess pesticide exposure and effects in rivers and streams.


Asunto(s)
Monitoreo del Ambiente/métodos , Invertebrados/crecimiento & desarrollo , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Biodiversidad , Ecosistema , Alemania , Invertebrados/clasificación , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA