RESUMEN
Electroactive organic electrode materials exhibit remarkable potential in aqueous zinc ion batteries (AZIBs) due to their abundant availability, customizable structures, sustainability, and high reversibility. However, the research on AZIBs has predominantly concentrated on unraveling the storage mechanism of zinc cations, often neglecting the significance of anions in this regard. Herein, bipolar poly(thionine) is synthesized by a simple and efficient polymerization reaction, and the kinetics of different anions are investigated using poly(thionine) as the cathode of AZIBs. Notably, poly(thionine) is a bipolar organic polymer electrode material and exhibits enhanced stability in aqueous solutions compared to thionine monomers. Kinetic analysis reveals that ClO4 - exhibits the fastest kinetics among SO4 2-, Cl-, and OTF-, demonstrating excellent rate performance (109 mAh g-1 @ 0.5 A g-1 and 92 mAh g-1 @ 20 A g-1). Mechanism studies reveal that the poly(thionine) cathode facilitates the co-storage of both anions and cations in Zn(ClO4)2. Furthermore, the lower electrostatic potential of ClO4 - influences the strength of hydrogen bonding with water molecules, thereby enhancing the overall kinetics in aqueous electrolytes. This work provides an effective strategy for synthesizing high-quality organic materials and offers new insights into the kinetic behavior of anions in AZIBs.
RESUMEN
The evolution of nature created delicate structures and organisms. With the advancement of technology, especially the rise of additive manufacturing, bionics has gradually become a popular research field. Recently, researchers have concentrated on soft robotics, which can mimic the complex movements of animals by allowing continuous and often responsive local deformations. These properties give soft robots advantages in terms of integration and control with human tissue. The rise of additive manufacturing technologies and soft matters makes the fabrication of soft robots with complex functions such as bending, twisting, intricate 3D motion, grasping, and stretching possible. In this paper, the advantages and disadvantages of the additive manufacturing process, including fused deposition modeling, direct ink writing, inkjet printing, stereolithography, and selective laser sintering, are discussed. The applications of 3D printed soft matter in bionics, soft robotics, flexible electronics, and biomedical engineering are reviewed.
Asunto(s)
Impresión Tridimensional , Robótica , Animales , ElectrónicaRESUMEN
Acromegaly is a rare endocrine disorder caused by hypersecretion of growth hormone (GH) from a pituitary adenoma. Elevated GH levels stimulate excess production of insulin-like growth factor 1 (IGF-1) which leads to the insidious onset of clinical manifestations. The most common primary central nervous system (CNS) tumors, meningiomas originate from the arachnoid layer of the meninges and are typically benign and slow-growing. Meningiomas are over twice as common in women as in men, with age-adjusted incidence (per 100,000 individuals) of 10.66 and 4.75, respectively. Several reports describe co-occurrence of meningiomas and acromegaly. We aimed to determine whether patients with acromegaly are at elevated risk for meningioma. Investigation of the literature showed that co-occurrence of a pituitary adenoma and a meningioma is a rare phenomenon, and the majority of cases involve GH-secreting adenomas. To the best of our knowledge, a systematic review examining the association between meningiomas and elevated GH levels (due to GH-secreting adenomas in acromegaly or exposure to exogenous GH) has never been conducted. The nature of the observed coexistence between acromegaly and meningioma -whether it reflects causation or mere co-association -is unclear, as is the pathophysiologic etiology. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022376998.
Asunto(s)
Acromegalia , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/complicaciones , Meningioma/etiología , Meningioma/patología , Meningioma/epidemiología , Acromegalia/complicaciones , Neoplasias Meníngeas/complicaciones , Neoplasias Meníngeas/epidemiología , Neoplasias Meníngeas/patología , Hormona de Crecimiento Humana/metabolismo , Hormona de Crecimiento Humana/sangre , Factores de Riesgo , Adenoma/complicaciones , Adenoma/metabolismo , Adenoma/patología , Adenoma/epidemiologíaRESUMEN
With the huge demands of an aging society, it is urgent to develop a new generation of non-toxic titanium alloy to match the modulus of human bone. Here, we prepared bulk Ti2448 alloys by powder metallurgy technology, and focused on the influence of the sintering process on the porosity, phase composition, and mechanical properties of the initial sintered samples. Furthermore, we performed solution treatment on the samples under different sintering parameters to further adjust the microstructure and phase composition, so as to achieve strength enhancement and reduction of Young's modulus. Solution treatment can effectively inhibit the continuous α phase precipitated along the grain boundaries of the ß matrix, which is beneficial to the fracture resistance. Therefore, the water-quenched sample exhibits good mechanical properties due to the absence of acicular α-phase. Samples sintered at 1400 °C and subsequently water quenched have excellent comprehensive mechanical properties, which benefit from high porosity and the smaller feature size of microstructure. To be specific, the compressive yield stress is 1100 MPa, the strain at fracture is 17.5%, and the Young's modulus is 44 GPa, which are more applicable to orthopedic implants. Finally, the relatively mature sintering and solution treatment process parameters were screened out for reference in actual production.
RESUMEN
Astrocytes undergo robust gene expression changes in response to a variety of perturbations, including ischemic injury. How these transitions are affected by time, and how heterogeneous and spatially distinct various reactive astrocyte populations are, remain unclear. To address these questions, we performed spatial transcriptomics as well as single nucleus RNAseq of ~138,000 mouse forebrain astrocytes at 1, 3, and 14 days after ischemic injury. We observed a widespread and temporally diverse response across many astrocyte subtypes. We identified astrocyte clusters unique in injury, including a transiently proliferative substate that may be BRCA1-dependent. We also found an interferon-responsive population that rapidly expands to the perilesion cortex at 1 day and persists up to 14 days post stroke. These lowly abundant, spatially restricted populations are likely functionally important in post-injury stabilization and resolution. These datasets offer valuable insights into injury-induced reactive astrocyte heterogeneity and can be used to guide functional interrogation of biologically meaningful reactive astrocyte substates to understand their pro- and anti-reparative functions following acute injuries such as stroke.