Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2402767, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086056

RESUMEN

Electroactive organic electrode materials exhibit remarkable potential in aqueous zinc ion batteries (AZIBs) due to their abundant availability, customizable structures, sustainability, and high reversibility. However, the research on AZIBs has predominantly concentrated on unraveling the storage mechanism of zinc cations, often neglecting the significance of anions in this regard. Herein, bipolar poly(thionine) is synthesized by a simple and efficient polymerization reaction, and the kinetics of different anions are investigated using poly(thionine) as the cathode of AZIBs. Notably, poly(thionine) is a bipolar organic polymer electrode material and exhibits enhanced stability in aqueous solutions compared to thionine monomers. Kinetic analysis reveals that ClO4 - exhibits the fastest kinetics among SO4 2-, Cl-, and OTF-, demonstrating excellent rate performance (109 mAh g-1 @ 0.5 A g-1 and 92 mAh g-1 @ 20 A g-1). Mechanism studies reveal that the poly(thionine) cathode facilitates the co-storage of both anions and cations in Zn(ClO4)2. Furthermore, the lower electrostatic potential of ClO4 - influences the strength of hydrogen bonding with water molecules, thereby enhancing the overall kinetics in aqueous electrolytes. This work provides an effective strategy for synthesizing high-quality organic materials and offers new insights into the kinetic behavior of anions in AZIBs.

2.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35409150

RESUMEN

The evolution of nature created delicate structures and organisms. With the advancement of technology, especially the rise of additive manufacturing, bionics has gradually become a popular research field. Recently, researchers have concentrated on soft robotics, which can mimic the complex movements of animals by allowing continuous and often responsive local deformations. These properties give soft robots advantages in terms of integration and control with human tissue. The rise of additive manufacturing technologies and soft matters makes the fabrication of soft robots with complex functions such as bending, twisting, intricate 3D motion, grasping, and stretching possible. In this paper, the advantages and disadvantages of the additive manufacturing process, including fused deposition modeling, direct ink writing, inkjet printing, stereolithography, and selective laser sintering, are discussed. The applications of 3D printed soft matter in bionics, soft robotics, flexible electronics, and biomedical engineering are reviewed.


Asunto(s)
Impresión Tridimensional , Robótica , Animales , Electrónica
3.
Materials (Basel) ; 16(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37241471

RESUMEN

With the huge demands of an aging society, it is urgent to develop a new generation of non-toxic titanium alloy to match the modulus of human bone. Here, we prepared bulk Ti2448 alloys by powder metallurgy technology, and focused on the influence of the sintering process on the porosity, phase composition, and mechanical properties of the initial sintered samples. Furthermore, we performed solution treatment on the samples under different sintering parameters to further adjust the microstructure and phase composition, so as to achieve strength enhancement and reduction of Young's modulus. Solution treatment can effectively inhibit the continuous α phase precipitated along the grain boundaries of the ß matrix, which is beneficial to the fracture resistance. Therefore, the water-quenched sample exhibits good mechanical properties due to the absence of acicular α-phase. Samples sintered at 1400 °C and subsequently water quenched have excellent comprehensive mechanical properties, which benefit from high porosity and the smaller feature size of microstructure. To be specific, the compressive yield stress is 1100 MPa, the strain at fracture is 17.5%, and the Young's modulus is 44 GPa, which are more applicable to orthopedic implants. Finally, the relatively mature sintering and solution treatment process parameters were screened out for reference in actual production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA