Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833610

RESUMEN

Reactive oxygen species (ROS) production is a key event in modulating plant responses to hypoxia and post-hypoxia reoxygenation. However, the molecular mechanism by which hypoxia-associated ROS homeostasis is controlled remains largely unknown. Here, we showed that the calcium-dependent protein kinase CPK16 regulates plant hypoxia tolerance by phosphorylating the plasma membrane-anchored NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) to regulate ROS production in Arabidopsis (Arabidopsis thaliana). In response to hypoxia or reoxygenation, CPK16 was activated through phosphorylation of its Ser274 residue. The cpk16 knockout mutant displayed enhanced hypoxia tolerance, whereas CPK16-overexpressing (CPK16-OE) lines showed increased sensitivity to hypoxic stress. In agreement with these observations, hypoxia and reoxygenation both induced ROS accumulation in the rosettes of CPK16-OEs more strongly than in rosettes of the cpk16-1 mutant or the wild type. Moreover, CPK16 interacted with and phosphorylated the N terminus of RBOHD at four serine residues (Ser133, Ser148, Ser163, and Ser347) that were necessary for hypoxia- and reoxygenation-induced ROS accumulation. Furthermore, the hypoxia-tolerant phenotype of cpk16-1 was fully abolished in the cpk16 rbohd double mutant. Thus, we have uncovered a regulatory mechanism by which the CPK16-RBOHD module shapes ROS production during hypoxia and reoxygenation in Arabidopsis.

2.
J Infect ; 88(3): 106118, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342382

RESUMEN

OBJECTIVES: The respiratory tract is the portal of entry for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a variety of respiratory pathogens other than SARS-CoV-2 have been associated with severe cases of COVID-19 disease, the dynamics of the upper respiratory microbiota during disease the course of disease, and how they impact disease manifestation, remain uncertain. METHODS: We collected 349 longitudinal upper respiratory samples from a cohort of 65 COVID-19 patients (cohort 1), 28 samples from 28 recovered COVID-19 patients (cohort 2), and 59 samples from 59 healthy controls (cohort 3). All COVID-19 patients originated from the earliest stage of the epidemic in Wuhan. Based on a modified clinical scale, the disease course was divided into five clinical disease phases (pseudotimes): "Healthy" (pseudotime 0), "Incremental" (pseudotime 1), "Critical" (pseudotime 2), "Complicated" (pseudotime 3), "Convalescent" (pseudotime 4), and "Long-term follow-up" (pseudotime 5). Using meta-transcriptomics, we investigated the features and dynamics of transcriptionally active microbes in the upper respiratory tract (URT) over the course of COVID-19 disease, as well as its association with disease progression and clinical outcomes. RESULTS: Our results revealed that the URT microbiome exhibits substantial heterogeneity during disease course. Two clusters of microbial communities characterized by low alpha diversity and enrichment for multiple pathogens or potential pathobionts (including Acinetobacter and Candida) were associated with disease progression and a worse clinical outcome. We also identified a series of microbial indicators that classified disease progression into more severe stages. Longitudinal analysis revealed that although the microbiome exhibited complex and changing patterns during COVID-19, a restoration of URT microbiomes from early dysbiosis toward more diverse status in later disease stages was observed in most patients. In addition, a group of potential pathobionts were strongly associated with the concentration of inflammatory indicators and mortality. CONCLUSION: This study revealed strong links between URT microbiome dynamics and disease progression and clinical outcomes in COVID-19, implying that the treatment of severe disease should consider the full spectrum of microbial pathogens present.


Asunto(s)
COVID-19 , Microbiota , Humanos , SARS-CoV-2 , Nariz , Progresión de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA