Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(19): 8576-8586, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696240

RESUMEN

Humic acid (HA) is ubiquitous in natural aquatic environments and effectively accelerates decontamination by permanganate (Mn(VII)). However, the detailed mechanism remains uncertain. Herein, the intrinsic mechanisms of HA's impact on phenolics oxidation by Mn(VII) and its intermediate manganese oxo-anions were systematically studied. Results suggested that HA facilitated the transfer of a single electron from Mn(VII), resulting in the sequential formation of Mn(VI) and Mn(V). The formed Mn(V) was further reduced to Mn(III) through a double electron transfer process by HA. Mn(III) was responsible for the HA-boosted oxidation as the active species attacking pollutants, while Mn(VI) and Mn(V) tended to act as intermediate species due to their own instability. In addition, HA could serve as a stabilizer to form a complex with produced Mn(III) and retard the disproportionation of Mn(III). Notably, manganese oxo-anions did not mineralize HA but essentially changed its composition. According to the results of Fourier-transform ion cyclotron resonance mass spectrometry and the second derivative analysis of Fourier-transform infrared spectroscopy, we found that manganese oxo-anions triggered the decomposition of C-H bonds on HA and subsequently produced oxygen-containing functional groups (i.e., C-O). This study might shed new light on the HA/manganese oxo-anion process.


Asunto(s)
Sustancias Húmicas , Manganeso , Oxidación-Reducción , Fenoles , Manganeso/química , Fenoles/química , Aniones , Compuestos de Manganeso/química , Óxidos/química , Contaminantes Químicos del Agua/química
2.
J Fluoresc ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520621

RESUMEN

In the paper, we have successfully prepared hexagonal boron nitride (h-BN:Tb3+, Ce3+) phosphors with melamine as the nitrogen source. The X-ray powder diffraction patterns confirm that the sample possesses a hexagonal crystal structure within the P 6 ¯ m2 space group. It is interesting that the co-doping combination of Tb3+ and Ce3+ can markedly enhance the threshold concentration of doped activators within the limited solid solution of h-BN phosphors. Under 302 nm excitation, the h-BN:Ce3+ phosphors exhibit broadband blue light emission at 406 nm. In h-BN:Tb3+, Ce3+ phosphors, the co-doping of Ce3+ not only ensures high phase purity but also results in strong green light emission. The energy transfer efficiency from Ce3+ to Tb3+ is about 55%. The fluorescence lifetime increases with the increase of Ce3+ and Tb3+ concentration, and the fluorescence lifetime of h-BN:0.025Tb3+, 0.05Ce3+ phosphor reached 2.087 ms. Additionally, the h-BN:0.025Tb3+, 0.05Ce3+ phosphor exhibits excellent thermal performance with an activation energy value of 0.2825 eV. Moreover, the photoluminescence quantum yield of the sample exceeds 52%. Therefore, the h-BN:Tb3+, Ce3+ samples can be used as green phosphors for solid state lighting and fluorescent labeling.

3.
J Hazard Mater ; 474: 134687, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38805816

RESUMEN

Due to the increasing attention for the residual of per- and polyfluorinated compounds in environmental water, Sodium p-Perfluorous Nonenoxybenzenesulfonate (OBS) have been considered as an alternative solution for perfluorooctane sulfonic acid (PFOS). However, recent detections of elevated OBS concentrations in oil fields and Frontal polymerization foams have raised environmental concerns leading to the decontamination exploration for this compound. In this study, three advanced reduction processes including UV-Sulfate (UV-SF), UV-Iodide (UV-KI) and UV-Nitrilotriacetic acid (UV-NTA) were selected to evaluate the removal for OBS. Results revealed that hydrated electrons (eaq-) dominated the degradation and defluorination of OBS. Remarkably, the UV-KI exhibited the highest removal rate (0.005 s-1) and defluorination efficiency (35 %) along with the highest concentration of eaq- (K = -4.651). Despite that nucleophilic attack from eaq- on sp2 carbon and H/F exchange were discovered as the general mechanism, high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS) analysis with density functional theory (DFT) calculations revealed the diversified products and routes. Intermediates with lowest fluorine content for UV-KI were identified, the presence nitrogen-containing intermediates were revealed in the UV-NTA. Notably, the nitrogen-containing intermediates displayed the enhanced toxicity, and the iodine poly-fluorinated intermediates could be a potential-threat compared to the superior defluorination performance for UV-KI.

4.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38849297

RESUMEN

Biogenic coalbed methane (CBM) is a developing clean energy source. However, it is unclear how the mechanisms of bio-methane production with different sizes of coal. In this work, pulverized coal (PC) and lump coal (LC) were used for methane production by mixed fungi-methanogen microflora. The lower methane production from LC was observed. The aromatic carbon of coal was degraded slightly by 2.17% in LC, while 11.28% in PC. It is attributed to the proportion of lignin-degrading fungi, especially Penicillium, which was reached 67.57% in PC on the 7th day, higher than that of 11.38% in LC. The results suggested that the limited interaction area in LC led to microorganisms hardly utilize aromatics. It also led the accumulation of aromatic organics in the fermentation broth in PC. Increasing the reaction area of coal and facilitating the conversion of aromatic carbon are suggested means to increase methane production in situ.


Asunto(s)
Biodegradación Ambiental , Carbón Mineral , Hongos , Lignina , Metano , Metano/metabolismo , Carbón Mineral/microbiología , Hongos/metabolismo , Hongos/clasificación , Lignina/metabolismo , Fermentación , Penicillium/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA