Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Angew Chem Int Ed Engl ; 62(45): e202310078, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37724448

RESUMEN

Chiral α,α-diaryl ketones are structural motifs commonly present in bioactive molecules, and they are also valuable building blocks in synthetic organic chemistry. However, catalytic asymmetric synthesis of α,α-diaryl ketones bearing a tertiary stereogenic center remains largely unsolved. Herein, we report a catalytic de novo enantioselective synthesis of α,α-diaryl ketones from simple alkynes via chiral phosphoric acid (CPA) catalysis. A broad range of enolizable α,α-diaryl ketones are prepared in good yields and with excellent enantioselectivities. The described protocol also serves as an efficient deuteration method for the preparation of enantiomerically enriched deuterated α,α-diaryl ketones. Using the methodology reported, bioactive molecules, including one of the best-selling anti-breast cancer drugs, tamoxifen, are readily synthesized.

2.
J Org Chem ; 86(18): 13092-13099, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34470208

RESUMEN

We developed the radical cyclization/addition of alkynylphosphine oxides with easily available cycloalkanes, alcohols, and ethers using a visible-light and environmentally friendly synthetic strategy in the absence of photocatalyst at room temperature. This mild and metal- and base-free reaction provided a structurally varied set of significant benzo[b]phosphole oxides through sequential C-H functionalization in an atom-economical manner.

3.
J Org Chem ; 85(10): 6359-6371, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32299209

RESUMEN

The first metal-free and facile radical addition/cyclization of simple alcohols with diaryl(arylethynyl)phosphine oxides has been described with azobisisobutyronitrile as a radical initiator, affording an efficient and one-pot procedure to access a new class of hydroxymethyl benzo[b]phosphole oxides and 6H-indeno[2,1-b]phosphindole 5-oxides for potential application in organic materials via sequential C(sp3)-H/C(sp2)-H functionalization. The method employs easily accessible starting materials and is endowed with high regioselectivity and broad functional-group tolerance.

4.
Cereb Cortex ; 29(3): 963-977, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29415226

RESUMEN

Neuron-glial related cell adhesion molecule NrCAM is a newly identified negative regulator of spine density that genetically interacts with Semaphorin3F (Sema3F), and is implicated in autism spectrum disorders (ASD). To investigate a role for NrCAM in spine pruning during the critical adolescent period when networks are established, we generated novel conditional, inducible NrCAM mutant mice (Nex1Cre-ERT2: NrCAMflox/flox). We demonstrate that NrCAM functions cell autonomously during adolescence in pyramidal neurons to restrict spine density in the visual (V1) and medial frontal cortex (MFC). Guided by molecular modeling, we found that NrCAM promoted clustering of the Sema3F holoreceptor complex by interfacing with Neuropilin-2 (Npn2) and PDZ scaffold protein SAP102. NrCAM-induced receptor clustering stimulated the Rap-GAP activity of PlexinA3 (PlexA3) within the holoreceptor complex, which in turn, inhibited Rap1-GTPase and inactivated adhesive ß1 integrins, essential for Sema3F-induced spine pruning. These results define a developmental function for NrCAM in Sema3F receptor signaling that limits dendritic spine density on cortical pyramidal neurons during adolescence.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Espinas Dendríticas/fisiología , Lóbulo Frontal/crecimiento & desarrollo , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Células Piramidales/fisiología , Corteza Visual/crecimiento & desarrollo , Animales , Guanilato-Quinasas/fisiología , Ratones Transgénicos , Modelos Moleculares , Transducción de Señal
5.
Adv Sci (Weinh) ; 11(24): e2309645, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38650176

RESUMEN

Chiral aldehydes containing a tertiary stereogenic center are versatile building blocks in organic chemistry. In particular, such structural motifs bearing an α,α-diaryl moiety are very challenging scaffolds and their efficient asymmetric synthesis is not reported. In this work, a phosphoric acid-catalyzed enantioselective synthesis of α,α-diaryl aldehydes from simple terminal alkynes is presented. This approach yields a wide range of highly enolizable α,α-diaryl aldehydes in good yields with excellent enantioselectivities. Facile transformations of the products, as well as an efficient synthesis of bioactive molecules, including an effective anti-smallpox agent and an FDA-approved antidepressant drug (+)-sertraline, are demonstrated.

6.
Chem Sci ; 15(16): 5993-6001, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38665510

RESUMEN

Axially chiral molecular scaffolds are widely present in therapeutic agents, natural products, catalysts, and advanced materials. The construction of such molecules has garnered significant attention from academia and industry. The catalytic asymmetric synthesis of axially chiral biaryls, along with other non-biaryl axially chiral molecules, has been extensively explored in the past decade. However, the atroposelective synthesis of C-O axial chirality remains largely underdeveloped. Herein, we document a copper-catalyzed atroposelective construction of C-O axially chiral compounds using novel 1,8-naphthyridine-based chiral ligands. Mechanistic investigations have provided good evidence in support of a mechanism involving synergistic interplay between a desymmetrization reaction and kinetic resolution process. The method described in this study holds great significance for the atroposelective synthesis of C-O axially chiral compounds, with promising applications in organic chemistry. The utilization of 1,8-naphthyridine-based ligands in copper catalysis is anticipated to find broad applications in asymmetric copper(i)-catalyzed azide-alkyne cycloadditions (CuAACs) and beyond.

7.
Neuron ; 112(1): 41-55.e3, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37898123

RESUMEN

Primary cilia act as antenna receivers of environmental signals and enable effective neuronal or glial responses. Disruption of their function is associated with circuit disorders. To understand the signals these cilia receive, we comprehensively mapped cilia's contacts within the human cortical connectome using serial-section EM reconstruction of a 1 mm3 cortical volume, spanning the entire cortical thickness. We mapped the "contactome" of cilia emerging from neurons and astrocytes in every cortical layer. Depending on the layer and cell type, cilia make distinct patterns of contact. Primary cilia display cell-type- and layer-specific variations in size, shape, and microtubule axoneme core, which may affect their signaling competencies. Neuronal cilia are intrinsic components of a subset of cortical synapses and thus a part of the connectome. This diversity in the structure, contactome, and connectome of primary cilia endows each neuron or glial cell with a unique barcode of access to the surrounding neural circuitry.


Asunto(s)
Cilios , Conectoma , Humanos , Neuronas/fisiología , Corteza Cerebral , Neuroglía/fisiología
8.
Nat Commun ; 14(1): 4813, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558716

RESUMEN

The C-N axially chiral N-arylpyrrole motifs are privileged scaffolds in numerous biologically active molecules and natural products, as well as in chiral ligands/catalysts. Asymmetric synthesis of N-arylpyrroles, however, is still challenging, and the simultaneous creation of contiguous C-N axial and central chirality remains unknown. Herein, a diastereo- and atroposelective synthesis of N-arylpyrroles enabled by light-induced phosphoric acid catalysis has been developed. The key transformation is a one-pot, three-component oxo-diarylation reaction, which simultaneously creates a C-N axial chirality and a central quaternary stereogenic center. A broad range of unactivated alkynes were readily employed as a reaction partner in this transformation, and the N-arylpyrrole products are obtained in good yields, with excellent enantioselectivities and very good diastereoselectivities. Notably, the N-arylpyrrole skeletons represent interesting structural motifs that could be used as chiral ligands and catalysts in asymmetric catalysis.

9.
ACS Cent Sci ; 9(9): 1758-1767, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37780359

RESUMEN

Heterocyclic scaffolds are commonly found in numerous biologically active molecules, therapeutic agents, and agrochemicals. To probe chemical space around heterocycles, many powerful molecular editing strategies have been devised. Versatile C-H functionalization strategies allow for peripheral modifications of heterocyclic motifs, often being specific and taking place at multiple sites. The past few years have seen the quick emergence of exciting "single-atom skeletal editing" strategies, through one-atom deletion or addition, enabling ring contraction/expansion and structural diversification, as well as scaffold hopping. The construction of heterocycles via deconstruction of simple heterocycles is unknown. Herein, we disclose a new molecular editing method which we name the skeletal recasting strategy. Specifically, by tapping on the 1,3-dipolar property of azoalkenes, we recast simple pyrroles to fully substituted pyrroles, through a simple phosphoric acid-promoted one-pot reaction consisting of dearomative deconstruction and rearomative reconstruction steps. The reaction allows for easy access to synthetically challenging tetra-substituted pyrroles which are otherwise difficult to synthesize. Furthermore, we construct N-N axial chirality on our pyrrole products, as well as accomplish a facile synthesis of the anticancer drug, Sutent. The potential application of this method to other heterocycles has also been demonstrated.

10.
Sci Adv ; 8(37): eadd2574, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36103531

RESUMEN

Alkynes represent a family of pivotal and sustainable feedstocks for various industries such as pharmaceuticals, agrochemicals, and materials, and they are widely used as important starting materials for the production of a broad range of chemical entities. Nevertheless, efficient structural elaborations of alkynes in chemical synthesis, especially asymmetric multifunctionalization of alkynes, remain largely unexplored. It is thus imperative to develop new asymmetric synthetic approaches, making use of these richly available chemical feedstocks, and enabling their conversion to value-added chiral molecules. Here, we disclose our findings on highly enantioselective multifunctionalization of alkynes by merging photochemistry and chiral phosphoric acid catalysis. Our reported one-pot synthetic protocol is applicable to all types of alkyne substrates, incorporating all three reactants in a fully atom-economic fashion to produce optically enriched tetrasubstituted triaryl- and diarylmethanes, important structural scaffolds in medicinal chemistry and biological sciences.

11.
Curr Top Dev Biol ; 142: 99-146, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33706927

RESUMEN

Primary cilium, first described in the 19th century in different cell types and organisms by Alexander Ecker, Albert Kolliker, Aleksandr Kowalevsky, Paul Langerhans, and Karl Zimmermann (Ecker, 1844; Kolliker, 1854; Kowalevsky, 1867; Langerhans, 1876; Zimmermann, 1898), play an essential modulatory role in diverse aspects of nervous system development and function. The primary cilium, sometimes referred to as the cell's 'antennae', can receive wide ranging inputs from cellular milieu, including morphogens, growth factors, neuromodulators, and neurotransmitters. Its unique structural and functional organization bequeaths it the capacity to hyper-concentrate signaling machinery in a restricted cellular domain approximately one-thousandth the volume of cell soma. Thus enabling it to act as a signaling hub that integrates diverse developmental and homestatic information from cellular milieu to regulate the development and function of neural cells. Dysfunction of primary cilia contributes to the pathophysiology of several brain malformations, intellectual disabilities, epilepsy, and psychiatric disorders. This review focuses on the most essential contributions of primary cilia to cerebral cortical development and function, in the context of neurodevelopmental disorders and malformations. It highlights the recent progress made in identifying the mechanisms underlying primary cilia's role in cortical progenitors, neurons and glia, in health and disease. A future challenge will be to translate these insights and advances into effective clinical treatments for ciliopathies.


Asunto(s)
Cilios , Neurogénesis , Humanos , Neuronas , Transducción de Señal
12.
Cell Rep ; 35(1): 108946, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826889

RESUMEN

Although embryonic brain development and neurodegeneration have received considerable attention, the events that govern postnatal brain maturation are less understood. Here, we identify the miR-29 family to be strikingly induced during the late stages of brain maturation. Brain maturation is associated with a transient, postnatal period of de novo non-CG (CH) DNA methylation mediated by DNMT3A. We examine whether an important function of miR-29 during brain maturation is to restrict the period of CH methylation via its targeting of Dnmt3a. Deletion of miR-29 in the brain, or knockin mutations preventing miR-29 to specifically target Dnmt3a, result in increased DNMT3A expression, higher CH methylation, and repression of genes associated with neuronal activity and neuropsychiatric disorders. These mouse models also develop neurological deficits and premature lethality. Our results identify an essential role for miR-29 in restricting CH methylation in the brain and illustrate the importance of CH methylation regulation for normal brain maturation.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Metilación de ADN/genética , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Animales , Animales Recién Nacidos , Secuencia de Bases , Conducta Animal , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , MicroARNs/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Neuronas/metabolismo , Neuronas/patología , Convulsiones/genética , Convulsiones/patología , Transducción de Señal , Sinapsis/metabolismo , Regulación hacia Arriba/genética
13.
Nat Commun ; 10(1): 134, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635555

RESUMEN

The development of the mammalian cerebral cortex depends on careful orchestration of proliferation, maturation, and migration events, ultimately giving rise to a wide variety of neuronal and non-neuronal cell types. To better understand cellular and molecular processes that unfold during late corticogenesis, we perform single-cell RNA-seq on the mouse cerebral cortex at a progenitor driven phase (embryonic day 14.5) and at birth-after neurons from all six cortical layers are born. We identify numerous classes of neurons, progenitors, and glia, their proliferative, migratory, and activation states, and their relatedness within and across age. Using the cell-type-specific expression patterns of genes mutated in neurological and psychiatric diseases, we identify putative disease subtypes that associate with clinical phenotypes. Our study reveals the cellular template of a complex neurodevelopmental process, and provides a window into the cellular origins of brain diseases.


Asunto(s)
Linaje de la Célula/genética , Desarrollo Embrionario/genética , Perfilación de la Expresión Génica , Neocórtex/embriología , Animales , Secuencia de Bases , Línea Celular , Ciliopatías/genética , Femenino , Células HEK293 , Humanos , Masculino , Trastornos Mentales/genética , Ratones , Ratones Endogámicos C57BL , Trastornos del Neurodesarrollo/genética , Neuronas/citología , Neuronas/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células Madre/citología , Transcripción Genética/genética
14.
Dev Cell ; 51(6): 759-774.e5, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31846650

RESUMEN

Appropriate axonal growth and connectivity are essential for functional wiring of the brain. Joubert syndrome-related disorders (JSRD), a group of ciliopathies in which mutations disrupt primary cilia function, are characterized by axonal tract malformations. However, little is known about how cilia-driven signaling regulates axonal growth and connectivity. We demonstrate that the deletion of related JSRD genes, Arl13b and Inpp5e, in projection neurons leads to de-fasciculated and misoriented axonal tracts. Arl13b deletion disrupts the function of its downstream effector, Inpp5e, and deregulates ciliary-PI3K/AKT signaling. Chemogenetic activation of ciliary GPCR signaling and cilia-specific optogenetic modulation of downstream second messenger cascades (PI3K, AKT, and AC3) commonly regulated by ciliary signaling receptors induce rapid changes in axonal dynamics. Further, Arl13b deletion leads to changes in transcriptional landscape associated with dysregulated PI3K/AKT signaling. These data suggest that ciliary signaling acts to modulate axonal connectivity and that impaired primary cilia signaling underlies axonal tract defects in JSRD.


Asunto(s)
Anomalías Múltiples/metabolismo , Axones/metabolismo , Cerebelo/anomalías , Cilios/metabolismo , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/metabolismo , Retina/anomalías , Anomalías Múltiples/genética , Animales , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Anomalías del Ojo/metabolismo , Enfermedades Renales Quísticas/genética , Ratones , Mutación/genética , Neurogénesis/fisiología , Retina/metabolismo
15.
Neuron ; 103(3): 423-431.e4, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31196673

RESUMEN

The paraventricular thalamus (PVT) is an interface for brain reward circuits, with input signals arising from structures, such as prefrontal cortex and hypothalamus, that are broadcast to downstream limbic targets. However, the precise synaptic connectivity, activity, and function of PVT circuitry for reward processing are unclear. Here, using in vivo two-photon calcium imaging, we find that PVT neurons projecting to the nucleus accumbens (PVT-NAc) develop inhibitory responses to reward-predictive cues coding for both cue-reward associative information and behavior. The multiplexed activity in PVT-NAc neurons is directed by opposing activity patterns in prefrontal and lateral hypothalamic afferent axons. Further, we find that prefrontal cue encoding may maintain accurate cue-reward processing, as optogenetic disruption of this encoding induced long-lasting effects on downstream PVT-NAc cue responses and behavioral cue discrimination. Together, these data reveal that PVT-NAc neurons act as an interface for reward processing by integrating relevant inputs to accurately inform reward-seeking behavior.


Asunto(s)
Aprendizaje por Asociación/fisiología , Área Hipotalámica Lateral/fisiología , Núcleos Talámicos de la Línea Media/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Animales , Condicionamiento Clásico , Ansia/fisiología , Señales (Psicología) , Ácido Glutámico/fisiología , Área Hipotalámica Lateral/citología , Ratones , Núcleos Talámicos de la Línea Media/citología , Vías Nerviosas/fisiología , Optogenética , Técnicas de Placa-Clamp , Corteza Prefrontal/citología , Recompensa , Ácido gamma-Aminobutírico/fisiología
16.
Dev Cell ; 42(3): 286-300.e4, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28787594

RESUMEN

Appropriate growth and synaptic integration of GABAergic inhibitory interneurons are essential for functional neural circuits in the brain. Here, we demonstrate that disruption of primary cilia function following the selective loss of ciliary GTPase Arl13b in interneurons impairs interneuronal morphology and synaptic connectivity, leading to altered excitatory/inhibitory activity balance. The altered morphology and connectivity of cilia mutant interneurons and the functional deficits are rescued by either chemogenetic activation of ciliary G-protein-coupled receptor (GPCR) signaling or the selective induction of Sstr3, a ciliary GPCR, in Arl13b-deficient cilia. Our results thus define a specific requirement for primary cilia-mediated GPCR signaling in interneuronal connectivity and inhibitory circuit formation.


Asunto(s)
Interneuronas/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Potenciales Sinápticos , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Animales , Células Cultivadas , Cilios/metabolismo , Interneuronas/citología , Interneuronas/fisiología , Ratones , Neurogénesis , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Sinapsis/fisiología
17.
Nat Commun ; 6: 7857, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26206566

RESUMEN

Primary cilia are essential conveyors of signals underlying major cell functions. Cerebral cortical progenitors and neurons have a primary cilium. The significance of cilia function for brain development and function is evident in the plethora of developmental brain disorders associated with human ciliopathies. Nevertheless, the role of primary cilia function in corticogenesis remains largely unknown. Here we delineate the functions of primary cilia in the construction of cerebral cortex and their relevance to ciliopathies, using an shRNA library targeting ciliopathy genes known to cause brain disorders, but whose roles in brain development are unclear. We used the library to query how ciliopathy genes affect distinct stages of mouse cortical development, in particular neural progenitor development, neuronal migration, neuronal differentiation and early neuronal connectivity. Our results define the developmental functions of ciliopathy genes and delineate disrupted developmental events that are integrally related to the emergence of brain abnormalities in ciliopathies.


Asunto(s)
Encefalopatías/genética , Corteza Cerebral/embriología , Cilios/genética , Animales , Femenino , Biblioteca de Genes , Humanos , Ratones Endogámicos C57BL , Neurogénesis , Embarazo , ARN Interferente Pequeño
18.
Trends Cell Biol ; 24(6): 342-51, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24388877

RESUMEN

Appropriate interneuron migration and distribution is essential for the construction of functional neuronal circuitry and the maintenance of excitatory/inhibitory balance in the brain. Gamma-aminobutyric acid (GABA)ergic interneurons originating from the ventral telencephalon choreograph a complex pattern of migration to reach their target destinations within the developing brain. This review examines the cellular and molecular underpinnings of the major decision-making steps involved in this process of oriental navigation of cortical interneurons.


Asunto(s)
Movimiento Celular , Corteza Cerebral/crecimiento & desarrollo , Interneuronas/citología , Animales , Corteza Cerebral/citología , Humanos , Ácido gamma-Aminobutírico/metabolismo
19.
Dev Cell ; 31(6): 677-89, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25535916

RESUMEN

Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. The two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial versus tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT-severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Regulación del Desarrollo de la Expresión Génica , Interneuronas/metabolismo , Microtúbulos/metabolismo , Neuronas/fisiología , Alelos , Animales , Diferenciación Celular , Movimiento Celular , Corteza Cerebral/metabolismo , Citoesqueleto/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Katanina , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Neuronas/metabolismo , Factores de Tiempo
20.
Nat Neurosci ; 16(8): 1000-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23817546

RESUMEN

The construction of cerebral cortex begins with the formation of radial glia. Once formed, polarized radial glial cells divide either symmetrically or asymmetrically to balance appropriate production of progenitor cells and neurons. Following birth, neurons use the processes of radial glia as scaffolding for oriented migration. Radial glia therefore provide an instructive structural matrix to coordinate the generation and placement of distinct groups of cortical neurons in the developing cerebral cortex. We found that Arl13b, a cilia-enriched small GTPase that is mutated in Joubert syndrome, was critical for the initial formation of the polarized radial progenitor scaffold. Using developmental stage-specific deletion of Arl13b in mouse cortical progenitors, we found that early neuroepithelial deletion of ciliary Arl13b led to a reversal of the apical-basal polarity of radial progenitors and aberrant neuronal placement. Arl13b modulated ciliary signaling necessary for radial glial polarity. Our findings indicate that Arl13b signaling in primary cilia is crucial for the initial formation of a polarized radial glial scaffold and suggest that disruption of this process may contribute to aberrant neurodevelopment and brain abnormalities in Joubert syndrome-related ciliopathies.


Asunto(s)
Factores de Ribosilacion-ADP/fisiología , Cilios/enzimología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , Neuroglía/ultraestructura , Factores de Ribosilacion-ADP/deficiencia , Factores de Ribosilacion-ADP/genética , Anomalías Múltiples , Animales , Axonema/ultraestructura , División Celular , Polaridad Celular , Enfermedades Cerebelosas/enzimología , Enfermedades Cerebelosas/genética , Enfermedades Cerebelosas/patología , Cerebelo/anomalías , Corteza Cerebral/anomalías , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Ventrículos Cerebrales/anomalías , Cilios/fisiología , Epitelio/ultraestructura , Anomalías del Ojo/enzimología , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Humanos , Enfermedades Renales Quísticas/enzimología , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/fisiología , Células-Madre Neurales/ultraestructura , Neurogénesis/genética , Neuroglía/fisiología , Retina/anomalías , Retina/enzimología , Retina/patología , Telencéfalo/embriología , Telencéfalo/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA