Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(3)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050619

RESUMEN

Comprehensive and accurate vegetation monitoring is required in forestry and agricultural applications. The optical remote sensing method could be a solution. However, the traditional light detection and ranging (LiDAR) scans a surface to create point clouds and provide only 3D-state information. Active laser-induced fluorescence (LIF) only measures the photosynthesis and biochemical status of vegetation and lacks information about spatial structures. In this work, we present a new Multi-Wavelength Fluorescence LiDAR (MWFL) system. The system extended the multi-channel fluorescence detection of LIF on the basis of the LiDAR scanning and ranging mechanism. Based on the principle prototype of the MWFL system, we carried out vegetation-monitoring experiments in the laboratory. The results showed that MWFL simultaneously acquires the 3D spatial structure and physiological states for precision vegetation monitoring. Laboratory experiments on interior scenes verified the system's performance. Fluorescence point cloud classification results were evaluated at four wavelengths and by comparing them with normal vectors, to assess the MWFL system capabilities. The overall classification accuracy and Kappa coefficient increased from 70.7% and 0.17 at the single wavelength to 88.9% and 0.75 at four wavelengths. The overall classification accuracy and Kappa coefficient improved from 76.2% and 0.29 at the normal vectors to 92.5% and 0.84 at the normal vectors with four wavelengths. The study demonstrated that active 3D fluorescence imaging of vegetation based on the MWFL system has a great application potential in the field of remote sensing detection and vegetation monitoring.


Asunto(s)
Imagenología Tridimensional , Luz , Plantas/anatomía & histología , Fluorescencia , Rayos Láser , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación
2.
Opt Express ; 27(17): 24043-24059, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31510299

RESUMEN

Light detection and ranging (lidar) can record a 3D environment as point clouds, which are unstructured and difficult to process efficiently. Point cloud segmentation is an effective technology to solve this problem and plays a significant role in various applications, such as forestry management and 3D building reconstruction. The spectral information from images could improve the segmentation result, but suffers from the varying illumination conditions and the registration problem. New hyperspectral lidar sensor systems can solve these problems, with the capacity to obtain spectral and geometric information simultaneously. The former segmentation on hyperspectral lidar were mainly based on spectral information. The geometric segmentation method widely used by single wavelength lidar was not employed for hyperspectral lidar yet. This study aims to fill this gap by proposing a hyperspectral lidar segmentation method with three stages. First, Connected-Component Labeling (CCL) using the geometric information is employed for base segmentation. Second, the output components of the first stage are split by the spectral difference using Density-Based Spatial Clustering of Applications with Noise (DBSCAN). Third, the components of the second stage are merged based on the spectral similarity using Spectral Angle Match (SAM). Two indoor experimental scenes were setup for validation. We compared the performance of our mothed with that of the 3D and intensity feature based method. The quantitative analysis indicated that, our proposed method improved the point-weighted score by 19.35% and 18.65% in two experimental scenes, respectively. These results showed that the geometric segmentation method for single wavelength lidar could be combined with the spectral information, and contribute to the more effective hyperspectral lidar point cloud segmentation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA