Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(10): 5735-5750, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38441287

RESUMEN

BACKGROUND: During the brewing of soy sauce, the conversion of multiple substances is driven by various microorganisms and their secreted enzyme systems. Soy sauce mash is an important source of enzyme systems during moromi fermentation, but the changes of enzyme systems in soy sauce mash during moromi fermentation are poorly understood. In order to explore the predominant enzyme systems existing during moromi fermentation and to explain the characteristics of the enzyme system changes, an enzymatic activities assay and 4D-label-free proteomics analysis were conducted on soy sauce mash at different stages of fermentation. RESULTS: The activities of hydrolytic enzymes in soy sauce mash decreased continuously throughout the fermentation process, while most of the characteristic physicochemical substances in soy sauce mash supernatant had already accumulated at the early stage of fermentation. Four hydrolytic enzymes were found to be positively correlated with important physicochemical indexes by principal component analysis and Pearson correlation analysis. The proteomics analysis revealed three highly upregulated enzymes and two enzymes that were present in important metabolic pathways throughout the fermentation process. Furthermore, it was found that Aspergillus oryzae was able to accumulate various nutrients in the soy sauce mash by downregulating most of its metabolic pathways. CONCLUSION: Enzymes present with excellent properties during the moromi fermentation period could be obtained from these results. Meanwhile, the characterization of the metabolic pathways of microorganisms during the moromi fermentation period was revealed. The results provide a basis for more scientific and purposeful improvement of moromi fermentation in the future. © 2024 Society of Chemical Industry.


Asunto(s)
Fermentación , Proteómica , Alimentos de Soja , Alimentos de Soja/análisis , Alimentos de Soja/microbiología , Proteínas Fúngicas/metabolismo , Aspergillus oryzae/metabolismo , Aspergillus oryzae/enzimología
2.
Crit Rev Food Sci Nutr ; 63(25): 7288-7310, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35238261

RESUMEN

The edible fungi have both edible and medicinal functions, in which terpenoids are one of the most important active ingredients. Terpenoids possess a wide range of biological activities and show great potential in the pharmaceutical and healthcare industries. In this review, the diverse biological activities of edible fungi terpenoids were summarized with emphasis on the mechanism of anti-cancer and anti-inflammation. Subsequently, this review focuses on advances in knowledge and understanding of the biosynthesis of terpenoids in edible fungi, especially in the generation of sesquiterpenes, diterpenes, and triterpenes. This paper is aim to provide an overview of biological functions and biosynthesis developed for utilizing the terpenoids in edible fungi.


Asunto(s)
Diterpenos , Sesquiterpenos , Triterpenos , Terpenos , Hongos
3.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37811651

RESUMEN

Probiotics are not only a food supplement, but they have shown great potential in their nutritional, health and therapeutic effects. To maximize the beneficial effects of probiotics, it is commonly achieved by adding prebiotics. Prebiotics primarily comprise indigestible carbohydrates, specific peptides, proteins, and lipids, with oligosaccharides being the most extensively studied prebiotics. However, these rapidly fermenting oligosaccharides have many drawbacks and can cause diarrhea and flatulence in the body. Hence, the exploration of new prebiotic is of great interest. Besides oligosaccharides, protein hydrolysates have been demonstrated to enhance the expression of beneficial properties of probiotics. Consequently, this paper outlines the mechanism underlying the action of protein hydrolysates on probiotics, as well as the advantageous impacts of proteins hydrolysates derived from various food sources on probiotics. In addition, this paper also reviews the currently reported biological activities of protein hydrolysates. The aim is a theoretical basis for the development and implementation of novel prebiotics.

4.
Microb Cell Fact ; 21(1): 169, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999536

RESUMEN

BACKGROUND: Cordyceps militaris is a traditional medicinal fungus contains a variety of functional ingredients and has been developed as an important mushroom food recently. Ergothioneine, one of the antioxidative compounds in C. militaris, is benefits on aging-related diseases and therefore became a novel functional food nutritive fortifier. Currently, the main diet source of ergothioneine is mushroom food. However, the mushroom farming faces the problems such as rather low ingredient yield and spontaneous degeneration associated fruiting body that restricts large scale production of ergothioneine. RESULTS: In this study, we excavated the ergothioneine synthetases in mushroom and modified the genes in C. militaris to construct a new ergothioneine synthesis pathway. By further introducing this pathway into C. militaris genome, we succeeded to increase the ingredients' production of engineering strain, the highest amount of ergothioneine and cordycepin were up to 2.5 g/kg dry weight and 2 g/L, respectively. Additionally, the expression of ergothioneine synthetase genes in the shape-mutated degenerative C. militaris could recover the ability of degenerative strain to produce high amount of ingredients, suggesting the metabolic regulation of ergothioneine might release the symptom of mushroom degeneration. CONCLUSION: This study reveals a new pathway to fulfill the market needs of functional mushroom food and food fortifier ergothioneine. It implied the mycelium of C. militaris could be engineered as a novel medicinal mushroom food which could produce higher amount of valuable ingredients.


Asunto(s)
Agaricales , Cordyceps , Ergotioneína , Cordyceps/genética , Cuerpos Fructíferos de los Hongos/metabolismo , Redes y Vías Metabólicas , Micelio/metabolismo
5.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34830071

RESUMEN

Enhancing the phagocytosis of immune cells with medicines provides benefits to the physiological balance by removing foreign pathogens and apoptotic cells. The fungal immunomodulatory protein (FIP) possessing various immunopotentiation functions may be a good candidate for such drugs. However, the effect and mechanism of FIP on the phagocytic activity is limitedly investigated. Therefore, the present study determined effects of Cordyceps militaris immunomodulatory protein (CMIMP), a novel FIP reported to induce cytokines secretion, on the phagocytosis using three different types of models, including microsphere, Escherichia Coli and Candida albicans. CMIMP not only significantly improved the phagocytic ability (p < 0.05), but also enhanced the bactericidal activity (p < 0.05). Meanwhile, the cell size, especially the cytoplasm size, was markedly increased by CMIMP (p < 0.01), accompanied by an increase in the F-actin expression (p < 0.001). Further experiments displayed that CMIMP-induced phagocytosis, cell size and F-actin expression were alleviated by the specific inhibitor of TLR4 (p < 0.05). Similar results were observed in the treatment with the inhibitor of the NF-κB pathway (p < 0.05). In conclusion, it could be speculated that CMIMP promoted the phagocytic ability of macrophages through increasing F-actin expression and cell size in a TLR4-NF-κB pathway dependent way.


Asunto(s)
Cordyceps/química , Proteínas Fúngicas/farmacología , Factores Inmunológicos/farmacología , Macrófagos , FN-kappa B/inmunología , Fagocitosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/inmunología , Animales , Candida albicans/inmunología , Escherichia coli/inmunología , Proteínas Fúngicas/química , Factores Inmunológicos/química , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Células RAW 264.7 , Transducción de Señal/inmunología
6.
J Sci Food Agric ; 101(5): 1879-1891, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32894778

RESUMEN

BACKGROUND: The fruiting body of Pleurotus tuoliensis deteriorates rapidly after harvest, causing a decline in its commercial value and a great reduction in its shelf life. According to the present research, carbohydrate-active enzymes (CAZymes) may cause the softening, liquefaction and autolysis of mature mushrooms after harvest. To further understand the in vivo molecular mechanism of CAZymes affecting the postharvest quality of P. tuoliensis fruiting bodies, a tandem mass tags labelling combined liquid chromatography-tandem mass spectrometry (TMT-MS/MS) proteomic analysis was performed on P. tuoliensis fruiting bodies during storage at 25 °C. RESULTS: A total of 4737 proteins were identified, which had at least one unique peptide and had a confidence level above 95%. Consequently, 1307 differentially expressed proteins (DEPs) were recruited using the criteria of abundance fold change (FC) >1.5 or < 0.67 and P < 0.05. The identified proteins were annotated by dbCAN2, a meta server for automated CAZymes annotation. Subsequently, 222 CAZymes were obtained. Several CAZymes participating in the cell wall degradation process, including ß-glucosidase, glucan 1,3-ß-glucosidase, endo-1,3(4)-ß-glucanase and chitinases, were significantly upregulated during storage. The protein expression level of CAZymes, such as xylanase, amylase and glucoamylase, were upregulated significantly, which may participate in the P. tuoliensis polysaccharide degradation. CONCLUSIONS: The identified CAZymes degraded the polysaccharides and lignin, destroying the cell wall structure, preventing cell wall remodeling, causing a loss of nutrients and the browning phenomenon, accelerating the deterioration of P. tuoliensis fruiting body. © 2020 Society of Chemical Industry.


Asunto(s)
Cuerpos Fructíferos de los Hongos/química , Proteínas Fúngicas/química , Pleurotus/enzimología , Pleurotus/genética , Quitinasas/química , Quitinasas/genética , Quitinasas/metabolismo , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Lignina/metabolismo , Pleurotus/química , Proteómica , Espectrometría de Masas en Tándem , beta-Glucosidasa/química , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo
7.
Microb Cell Fact ; 19(1): 164, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811496

RESUMEN

BACKGROUND: Ergothioneine (EGT) has a unique antioxidant ability and diverse beneficial effects on human health. But the content of EGT is very low in its natural producing organisms such as Mycobacterium smegmatis and mushrooms. Therefore, it is necessary to highly efficient heterologous production of EGT in food-grade yeasts such as Saccharomyces cerevisiae. RESULTS: Two EGT biosynthetic genes were cloned from the mushroom Grifola frondosa and successfully heterologously expressed in Saccharomyces cerevisiae EC1118 strain in this study. By optimization of the fermentation conditions of the engineered strain S. cerevisiae EC1118, the 11.80 mg/L of EGT production was obtained. With daily addition of 1% glycerol to the culture medium in the fermentation process, the EGT production of the engineered strain S. cerevisiae EC1118 can reach up to 20.61 mg/L. CONCLUSION: A successful EGT de novo biosynthetic system of S. cerevisiae containing only two genes from mushroom Grifola frondosa was developed in this study. This system provides promising prospects for the large scales production of EGT for human health.


Asunto(s)
Agaricales/genética , Ergotioneína/biosíntesis , Glicerol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antioxidantes/química , Ergotioneína/química , Fermentación , Regulación Bacteriana de la Expresión Génica , Genes Fúngicos , Microbiología Industrial , Microorganismos Modificados Genéticamente
8.
Microb Pathog ; 131: 205-211, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30953747

RESUMEN

Musa basjoo is a kind of popular slimming fruit in southern China. However, even though the trophic component and physiological effect are well studied, its internal mechanism in reconstructing gut microbiota remains unclear. In this study, maturity of M. basjoo were divided into four levels. Results indicated that M. basjoo in level Ⅱ (with 35% maturity) represented the greatest increase in the growth in vitro of probiotics, Lactobacillus plantarum FMNP01 and Lactobacillus casei FMNP02. After feeding M. basjoo with the middle dose (2.67 g/kg·BW) to mice for 21 days, gut microbiota from mice feces was isolated and sequenced. Results of 16SrDNA sequencing showed that the scattered genera of gut microbiota were significantly gathered. The amounts of different pathogens were decreased, while probiotics such as genera Bacteroides and Roseburia were significantly increased (p < 0.05). Results of function prediction indicated that the reconstruction of gut microbiota may due to the change in carbohydrate transportation, biosynthesis of cell wall, cell membrane, and cell envelope. This study has drawn a basic mechanism in reconstructing gut microbiota by feeding M. basjoo and lay out a foundation for further reach on the interaction between human as diner and M. basjoo as food.


Asunto(s)
Microbioma Gastrointestinal , Ratones/microbiología , Musa/química , Probióticos , Alimentación Animal , Animales , Bacteroides/fisiología , Pared Celular/metabolismo , China , ADN Ribosómico , Modelos Animales de Enfermedad , Heces/microbiología , Inocuidad de los Alimentos , Tracto Gastrointestinal/microbiología , Lacticaseibacillus casei/fisiología , Lactobacillus plantarum/fisiología , Metagenómica , Ratones Endogámicos BALB C , Probióticos/clasificación , Probióticos/farmacología , Organismos Libres de Patógenos Específicos
9.
Biotechnol Lett ; 40(8): 1245-1251, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29869304

RESUMEN

OBJECTIVES: Taxoid 10ß-O-acetyl transferase (DBAT) was redesigned to enhance its catalytic activity and substrate preference for baccatin III and taxol biosynthesis. RESULTS: Residues H162, D166 and R363 were determined as potential sites within the catalytic pocket of DBAT for molecular docking and site-directed mutagenesis to modify the activity of DBAT. Enzymatic activity assays revealed that the kcat/KM values of mutant H162A/R363H, D166H, R363H, D166H/R363H acting on 10-deacetylbaccatin III were about 3, 15, 26 and 60 times higher than that of the wild type of DBAT, respectively. Substrate preference assays indicated that these mutants (H162A/R363H, D166H, R363H, D166H/R363H) could transfer acetyl group from unnatural acetyl donor (e.g. vinyl acetate, sec-butyl acetate, isobutyl acetate, amyl acetate and isoamyl acetate) to 10-deacetylbaccatin III. CONCLUSION: Taxoid 10ß-O-acetyl transferase mutants with redesigned active sites displayed increased catalytic activities and modified substrate preferences, indicating their possible application in the enzymatic synthesis of baccatin III and taxol.


Asunto(s)
Acetilesterasa/metabolismo , Histidina , Mutagénesis Sitio-Dirigida/métodos , Proteínas Recombinantes/metabolismo , Taxoides/metabolismo , Acetilesterasa/genética , Escherichia coli/genética , Histidina/genética , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Simulación del Acoplamiento Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Especificidad por Sustrato , Taxus/enzimología , Taxus/genética
10.
Prep Biochem Biotechnol ; 46(4): 399-405, 2016 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-26176886

RESUMEN

Strains of Leuconostoc mesenteroides, Pediococcus pentosaceus, and Lactobacillus brevis were identified from mango fruits by partial 16S rDNA gene sequence. Based on the ability of producing mannitol and diacetyl, Leuconostoc mesenteroides MPL18 and MPL39 were selected within the lactic acid bacteria isolates, and used as mixed starters to ferment mango juice (MJ). Both the autochthonous strains grew well in fermented mango juice (FMJ) and remained viable at 9.81 log cfu mL(-1) during 30 days of storage at 4°C. The content of total sugar of FMJ was lower than that of MJ, while the concentration of mannitol was higher than that of MJ, and the concentration of diacetyl was 3.29 ± 0.12 mg L(-1). Among detected organic acids including citric acid, gallic acid, lactic acid, and acetic acid, only citric acid and gallic acid were found in MJ, while all detected organic acids were found in FMJ. The concentration of lactic acid of FMJ was the highest (78.62 ± 13.66 mM) among all detected organic acids. The DPPH radical scavenging capacity of FMJ was higher than that of MJ. Total phenolic compounds were better preserved in FMJ. The acidity and sweetness had a noticeable impact on the overall acceptance of the treated sample.


Asunto(s)
Fermentación , Lactobacillaceae/metabolismo , Mangifera/metabolismo , Probióticos , Genotipo , Lactobacillaceae/genética , Filogenia
11.
World J Microbiol Biotechnol ; 32(6): 102, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27116968

RESUMEN

Pinosylvin as a bioactive stilbene is of great interest for food supplements and pharmaceuticals development. In comparison to conventional extraction of pinosylvin from plant sources, biosynthesis engineering of microbial cell factories is a sustainable and flexible alternative method. Current synthetic strategies often require expensive phenylpropanoic precursor and inducer, which are not available for large-scale fermentation process. In this study, three bioengineering strategies were described to the development of a simple and economical process for pinosylvin biosynthesis in Escherichia coli. Firstly, we evaluated different construct environments to give a highly efficient constitutive system for enzymes of pinosylvin pathway expression: 4-coumarate: coenzyme A ligase (4CL) and stilbene synthase (STS). Secondly, malonyl coenzyme A (malonyl-CoA) is a key precursor of pinosylvin bioproduction and at low level in E. coli cell. Thus clustered regularly interspaced short palindromic repeats interference (CRISPRi) was explored to inactivate malonyl-CoA consumption pathway to increase its availability. The resulting pinosylvin content in engineered E. coli was obtained a 1.9-fold increase depending on the repression of fabD (encoding malonyl-CoA-ACP transacylase) gene. Eventually, a phenylalanine over-producing E. coli consisting phenylalanine ammonia lyase was introduced to produce the precursor of pinosylvin, trans-cinnamic acid, the crude extraction of cultural medium was used as supplementation for pinosylvin bioproduction. Using these combinatorial processes, 47.49 mg/L pinosylvin was produced from glycerol.


Asunto(s)
Bioingeniería/métodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Estilbenos/metabolismo , S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo/biosíntesis , S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo/genética , Aciltransferasas/metabolismo , Cinamatos/química , Coenzima A Ligasas/metabolismo , Ácidos Cumáricos/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Acido Graso Sintasa Tipo II/biosíntesis , Acido Graso Sintasa Tipo II/genética , Ácidos Grasos/biosíntesis , Glicerol/metabolismo , Malonil Coenzima A/metabolismo , Fenilalanina/metabolismo , Estilbenos/química , Estilbenos/economía
12.
J Basic Microbiol ; 54(12): 1387-94, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25138463

RESUMEN

(E, E, E)-Geranylgeraniol (GGOH) is a valuable ingredient of many perfumes and a valuable precursor for synthesizing pharmaceuticals. In an attempt to increase the GGOH concentration in Coprinopsis cinerea, we demonstrated that the expression of geranylgeranyl diphosphate synthase (ggpps) gene isolated from Taxus x media could promote GGOH production. Furthermore, the concentrations of squalene and ergosterol were measured in the engineered strains. Expectedly, significant decreases of squalene and ergosterol levels were observed in those strains transformed with ggpps gene. This could be explained by the partial redirection of metabolic flux from squalene to GGOH, whose biosynthesis competes for the same precursor with squalene. This work suggested that the expression of ggpps in higher fungi was an effective method for bio-production of GGOH.


Asunto(s)
Basidiomycota/metabolismo , Diterpenos/metabolismo , Farnesiltransferasa/genética , Basidiomycota/genética , Ergosterol/metabolismo , Farnesiltransferasa/metabolismo , Escualeno/metabolismo , Taxus/enzimología , Transformación Genética
13.
J Basic Microbiol ; 54 Suppl 1: S134-41, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23720193

RESUMEN

A genomic laccase gene and cDNA were cloned from the white-rot fungi Ganoderma lucidum TR6. The genomic laccase gene contained 2086 bp with nine introns. The laccase cDNA had an open reading frame of 1563 bp. The deduced mature protein consisted of 520 amino acids. Both the genomic laccase gene and cDNA were expressed in the Pichia pastoris GS115. Laccase activities could be detected in transformants with laccase cDNA but not in transformants with genomic laccase gene. The highest activity value reached 685.8 U L(-1). The effects of temperature, pH and nitrogen source on laccase expression in P. pastoris were analyzed. The recombinant laccase was purified and the molecular mass was 73.4 KDa, a little bigger than native laccase. The optimal pH and temperature were specific at pH 3.5 and special range from 60 to 90 °C. The laccase was stable at pH 7.0 and temperature range of 20-30 °C. The Km and Vm values of this recombinant laccase for ABTS were 0.521 mM and 19.65 mM min(-1), respectively.


Asunto(s)
Lacasa/metabolismo , Pichia/genética , Reishi/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , ADN de Hongos/química , ADN de Hongos/genética , Estabilidad de Enzimas , Expresión Génica , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Vectores Genéticos , Concentración de Iones de Hidrógeno , Intrones , Cinética , Lacasa/química , Lacasa/genética , Lacasa/aislamiento & purificación , Datos de Secuencia Molecular , Peso Molecular , Nitrógeno/metabolismo , Sistemas de Lectura Abierta , Pichia/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Reishi/genética , Análisis de Secuencia de ADN , Temperatura
14.
J Sci Food Agric ; 94(12): 2376-83, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24403190

RESUMEN

BACKGROUND: 10-Deacetylbaccatin III (10-DAB) and baccatin III are intermediates in the biosynthesis of Taxol (an anti-cancer drug) and useful precursors for semi-synthesis of the drug. In this study, a bioconversion system was established for the production of baccatin III, an advanced precursor of paclitaxel, in the transgenic mushroom Flammulina velutipes expressing the 10-deacetylbaccatin III-10ß-O-acetyltransferase gene. The expression vector pgFvs-TcDBAT containing the 10-deacetylbaccatin III-10ß-O-acetyltransferase (DBAT) gene was constructed and transformed into the cells of F. velutipes by polyethylene glycol-mediated protoplast transformation. RESULTS: Polymerase chain reaction and Southern blotting analysis verified the successful integration of the exogenous DBAT gene into the genome of F. velutipes. Reverse transcription polymerase chain reaction and enzyme activity analyses confirmed that the DBAT gene was expressed in F. velutipes, and DBAT is able to convert substrate into baccatin III. CONCLUSION: The DBAT gene from the plant Taxus chinensis can be functionally expressed in F. velutipes. Transgenic F. velutipes expressing the DBAT gene is able to produce the target product, baccatin III. This is the first report about the transformation and expression of paclitaxel biosynthetic gene in the edible mushroom F. velutipes. This represents a significant step towards bio-production of paclitaxel and its advanced precursor baccatin III in an edible fungus.


Asunto(s)
Acetiltransferasas/genética , Alcaloides/biosíntesis , Flammulina/genética , Genes de Plantas , Paclitaxel/biosíntesis , Taxoides/metabolismo , Taxus/genética , Acetiltransferasas/metabolismo , Flammulina/metabolismo , Organismos Modificados Genéticamente , Taxus/enzimología
15.
World J Microbiol Biotechnol ; 30(2): 613-20, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24030169

RESUMEN

Squalene synthase (SQS) catalyzes the condensation of two molecules of farnesyl diphosphate to give presqualene diphosphate and the subsequent rearrangement to form squalene. The gene encoding squalene synthase was cloned from Poria cocos by degenerate PCR and inverse PCR. The open reading frame of the gene is 1,497 bp, which encodes 499 amino acid residues. A phylogenetic analysis revealed that P. cocos SQS belonged to the fungus group, and was more closely related to the SQS of Ganoderma lucidum than other fungi. The treatment of P. cocos with methyl jasmonate (MeJA) significantly enhanced the transcriptional level of P. cocos sqs gene and the content of squalene in P. cocos. The transcriptional level of sqs gene was approximately fourfold higher than the control sample and the squalene content reached 128.62 µg/g, when the concentration of MeJA was 300 µM after 72 h induction.


Asunto(s)
Acetatos/metabolismo , Ciclopentanos/metabolismo , Farnesil Difosfato Farnesil Transferasa/genética , Farnesil Difosfato Farnesil Transferasa/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Oxilipinas/metabolismo , Poria/enzimología , Escualeno/metabolismo , Clonación Molecular , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , Farnesil Difosfato Farnesil Transferasa/biosíntesis , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Reacción en Cadena de la Polimerasa , Poria/genética , Poria/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Regulación hacia Arriba
16.
Int J Med Mushrooms ; 26(3): 1-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505899

RESUMEN

Edible mushrooms have rich nutrition (e.g., proteins, dietary fibers, polysaccharides) and they can be potential sources of important ingredients in food processing. However, the cultivation of mushroom fruiting bodies needs a relatively long time, and they can be easily polluted during the growth process. At the same time, a lot of labor and larger planting areas are also required. As we all know, submerged fermentation is a good way to produce edible mushroom mycelia with less environmental pollution and small footprint, which are also rich in nutrition and bioactive components that are used as dietary supplements or health care products in the food industry. Therefore, it can be considered that the replacement of edible mushroom fruiting bodies with edible mushroom mycelia produced through submerged fermentation has great application potential in food production. At present, most of the research about edible mushroom mycelia focuses on the production of bioactive metabolites in fermentation liquid, but there are few reports that concentrate on their applications in food. This paper reviews the research progress of submerged culture of edible mushroom mycelia and their applications in food products.


Asunto(s)
Agaricales , Agaricales/metabolismo , Suplementos Dietéticos , Fermentación , Fibras de la Dieta , Micelio
17.
Indian J Microbiol ; 53(1): 70-6, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24426081

RESUMEN

In commercial tea production, plenty of tea leaf waste is generated, which may not only exert pollution risk to environment, but also a huge waste of bioactive ingredients in tea. In this study, the 4th to 7th leaves of tea bush were collected and used as substrate for mycelial culture of two renown medicinal mushrooms Grifola frondosa and Tianzhi (new variants of Ganoderma lucidum) to obtain a new type of solid-state fermented tea. Result showed that the polysaccharides of Grifola frondosa and Tianzhi fermented tea were 1.52 and 4.14 %, tea polyphenols were 1.51 and 1.85 %, the free amino acids were 1.52 and 0.94 %, caffeine were 1.16 and 1.70 %, polyphenols/amid acids ratio were 1.0 and 1.98, water extractions were 35.53 and 32.86 %, protein contents were 17.63 and 6.13 mg/g, respectively. The volatile components were mainly composed of alcohols, esters, aldehydes and ketones. The contents of major flavor compositions of fermented tea had changed and their relation tended to be harmonious, and the variety of amino acids significantly increased. Therefore, the sensory flavor and therapeutic qualities of fermented tea were significantly improved.

18.
Indian J Microbiol ; 53(2): 181-6, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24426106

RESUMEN

Burma reed (Neyraudia reynaudiana), a giant C4 grass, was included in substrate at the rates of 0, 20, 40 and 66 % to partially or wholly substitute sawdust and cottonseed hulls to evaluate its suitability for Pleurotus eryngii cultivation. Inclusion of 20 and 40 % Burma reed did not significantly affect linear mycelial growth, dry matter loss, spawn run period and fructification, and achieved high fruiting body yields and biological efficiency of 336.67 g/bag, 67.33 % and 342.15 g/bag, 68.43 %, respectively, which were not significantly different from 350.08 g/bag to 70.02 % obtained from the control substrate. Enzyme assay revealed that on the mixed substrates laccase and manganese peroxidase activity were significantly enhanced, but cellulase was significantly reduced in the middle stage of incubation as compared with the control substrate. Even on Burma reed substrate without sawdust and cottonseed hulls, fruiting body yield (313.56 g/bag) and biological efficiency (62.71 %) were satisfactory, although significantly lower than that on the control substrate. Therefore, Burma reed was a promising potential substrate for P. eryngii production to largely substitute sawdust and cottonseed hulls.

19.
Environ Sci Pollut Res Int ; 30(37): 86540-86555, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37420152

RESUMEN

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and per- and polyfluoroalkyl substances (PFAS) are endocrine disrupting chemicals that may cause breast cancer. However, there lacks consistent research on the association between TCDD, PFAS exposure, and breast cancer. To this end, a meta-analysis was carried out in this review to explore the relationship between these two endocrine disruptors and breast cancer. Relevant literature was searched from 5 databases: Medline, Scopus, Embase, PubMed, and Web of Science. Odds ratios (OR) with 95% confidence intervals (CIs) were pooled by fixed-effects and random-effects meta-analysis models. A total of 17 publications were finally included for quantitative evaluation. Meta-analysis showed that TCDD (OR = 1.00, 95% CI = 0.89-1.12, I2 = 39.3%, P = 0.144), PFOA (OR = 1.07, 95% CI = 0.84-1.38, I2 = 85.9%, P < 0.001), PFOS (OR = 1.01, 95% CI = 0.95-1.08, I2 = 65.7%, P < 0.001), PFNA (OR = 0.89, 95% CI = 0.67-1.19, I2 = 74.4%, P < 0.001), and PFHxS (OR = 0.90, 95% CI = 0.72-1.13, I2 = 74%, P < 0.001) were not significantly correlated with breast cancer. Internal exposure, however, showed a significant positive correlation between TCDD and BC (OR = 2.85, 95% CI = 1.23-6.59, I2 = 0.0%, P = 0.882). No statistically significant association between TCDD, PFAS exposure, and breast cancer was observed in this meta-analysis.


Asunto(s)
Ácidos Alcanesulfónicos , Neoplasias de la Mama , Disruptores Endocrinos , Contaminantes Ambientales , Fluorocarburos , Dibenzodioxinas Policloradas , Humanos , Femenino , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/epidemiología , Oportunidad Relativa
20.
Microb Biotechnol ; 15(12): 2982-2991, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36134724

RESUMEN

The medicinal mushroom Cordyceps militaris contains abundant valuable bioactive ingredients that have attracted a great deal of attention in the pharmaceutical and cosmetic industries. However, the development of this valuable mushroom faces the obstacle of lacking powerful genomic engineering tools. Here, by excavating the endogenous tRNA-processed element, introducing the extrachromosomal plasmid and alongside with homologous template, we develop a marker-free CRISPR-Cas9-TRAMA genomic editing system to achieve the multiplex gene precise editing and large synthetic cluster deletion in C. militaris. We further operated editing in the synthetases of cordycepin and ergothioneine to demonstrate the application of Cas9-TRAMA system in protein modification, promoter strength evaluation and 10 kb metabolic synthetic cluster deletion. The Cas9-TRAMA system provides a scalable method for excavating the valuable metabolic resource of medicinal mushrooms and constructing a mystical cellular pathway to elucidate the complex cell behaviours of the edible mushroom.


Asunto(s)
Agaricales , Cordyceps , Sistemas CRISPR-Cas , Cordyceps/genética , Cordyceps/metabolismo , Agaricales/genética , Edición Génica/métodos , ADN/metabolismo , Eliminación de Gen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA