RESUMEN
KEY MESSAGE: Structural variations are common in plant genomes, affecting meiotic recombination and distorted segregation in wheat. And presence/absence variations can significantly affect drought tolerance in wheat. Drought is a major abiotic stress limiting wheat production. Common wheat has a complex genome with three sub-genomes, which host large numbers of structural variations (SVs). SVs play critical roles in understanding the genetic contributions of plant domestication and phenotypic plasticity, but little is known about their genomic characteristics and their effects on drought tolerance. In the present study, high-resolution karyotypes of 180 doubled haploids (DHs) were developed. Signal polymorphisms between the parents involved with 8 presence-absence variations (PAVs) of tandem repeats (TR) distributed on the 7 (2A, 4A, 5A, 7A, 3B, 7B, and 2D) of 21 chromosomes. Among them, PAV on chromosome 2D showed distorted segregation, others transmit normal conforming to a 1:1 segregation ration in the population; and a PAVs recombination occurred on chromosome 2A. Association analysis of PAV and phenotypic traits under different water regimes, we found PAVs on chromosomes 4A, 5A, and 7B showed negative effect on grain length (GL) and grain width (GW); PAV.7A had opposite effect on grain thickness (GT) and spike length (SL), with the effect on traits differing under different water regimes. PAVs on linkage group 2A, 4A, 7A, 2D, and 7B associated with the drought tolerance coefficients (DTCs), and significant negative effect on drought resistance values (D values) were detected in PAV.7B. Additionally, quantitative trait loci (QTL) associated with phenotypic traits using the 90 K SNP array showed QTL for DTCs and grain-related traits in chromosomes 4A, and 5A, 3B were co-localized in differential regions of PAVs. These PAVs can cause the differentiation of the target region of SNP and could be used for genetic improvement of agronomic traits under drought stress via marker-assisted selection (MAS) breeding.
Asunto(s)
Carácter Cuantitativo Heredable , Triticum , Mapeo Cromosómico , Triticum/genética , Resistencia a la Sequía , Fenotipo , Grano Comestible/genética , AguaRESUMEN
BACKGROUND: Enterovirus (EV), parechovirus (HPeV), herpes simplex virus 1 and 2 (HSV1/2) are common viruses leading to viral central nervous system (CNS) infections which are increasingly predominant but exhibit deficiency in definite pathogen diagnosis with gold-standard quantitative PCR method. Previous studies have shown that droplet digital PCR (ddPCR) has great potential in pathogen detection and quantification, especially in low concentration samples. METHODS: Targeting four common viruses of EV, HPeV, HSV1, and HSV2 in cerebrospinal fluid (CSF), we developed a multiplex ddPCR assay using probe ratio-based multiplexing strategy, analyzed the performance, and evaluated it in 97 CSF samples collected from patients with suspected viral CNS infections on a two-channel ddPCR detection system. RESULTS: The four viruses were clearly distinguished by their corresponding fluorescence amplitude. The limits of detection for EV, HPeV, HSV1, and HSV2 were 5, 10, 5, and 10 copies per reaction, respectively. The dynamic range was at least four orders of magnitude spanning from 2000 to 2 copies per reaction. The results of 97 tested clinical CSF specimens were identical to those deduced from qPCR/qRT-PCR assays using commercial kits. CONCLUSION: The multiplex ddPCR assay was demonstrated to be an accurate and robust method which could detect EV, HPeV, HSV1, and HSV2 simultaneously. It provides a useful tool for clinical diagnosis and disease monitoring of viral CNS infections.
Asunto(s)
Enfermedades Virales del Sistema Nervioso Central , Infecciones por Enterovirus , Enterovirus , Herpesvirus Humano 1 , Parechovirus , Infecciones por Picornaviridae , Enterovirus/genética , Infecciones por Enterovirus/diagnóstico , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/genética , Humanos , Parechovirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodosRESUMEN
The pathogenesis of cervical cancer (CC) at molecular level has attracted much research attention. The current study aimed to explore the effects of LncRNA TDRG1 on cellular process in CC cells and its molecular mechanism. Expressions of TDRG1 and miR-214-5p in CC and normal tissues and CC cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The effects of TDRG1, miR-214-5p, and SOX4 on cell proliferation, migration, invasion, and EMT process of CC cells were detected by Cell Counting Kit-8 (CCK-8), colony formation, wound-healing, Transwell, and Western blot assays, respectively. StarBase and Targetscan7.2 were used to predict the target genes of TDRG1 and miR-214-5p, and the predictions were verified by dual-luciferase reporter assay. The expression of SOX4 in CC and normal tissues, and CC cells transfected with siTDRG1 or miR-214-5p inhibitor was determined by qRT-PCR. The results showed that expression of TDRG1 was up-regulated, while that of miR-214-5p was down-regulated in CC. The target genes of TDRG1 and miR-214-5p were verified to be miR-214-5p and SOX4, respectively. Knocking down TDRG1 expression could inhibit cell proliferation, colony, migration, and invasion abilities, and EMT process, whereas the inhibition of miR-214-5p expression partially reversed such results. Moreover, high SOX4 expression was observed in CC tissues, and down-regulating TDRG1 expression reduced the SOX4 expression while down-regulating miR-214-5p expression alleviated such an inhibition. In conclusion, TDRG1 acts as cancer promoter in CC through promoting cell proliferation, migration, invasion, and EMT process to modulate SOX4 expression through adsorbing miR-214-5p.
Asunto(s)
Movimiento Celular/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Factores de Transcripción SOXC/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Invasividad Neoplásica , ARN Largo no Codificante/genéticaRESUMEN
The androgen receptor (AR) is a ligand-activated transcription factor that is important for both the male and female reproductive systems. The expression and regulation of AR in the uterine endometrium during early pregnancy and decidualization remain relatively under-investigated, so we sought to immunohistochemically examine the spatiotemporal expression of AR in mouse uteri during the peri-implantation period as well as in response to specific steroid hormones. AR protein was found in the nuclei of uterine stromal cells starting on pregnancy Days 1 and 2, with its abundance increasing on Days 3 and 4. From pregnancy Days 5 to 9, however, the expression of AR markedly declined in stromal zones of uteri. No signal was detected in the decidualized cells surrounding the site of embryo implantation; moreover, no AR immunostaining was observed in decidualized uterine cells in an artificial oil-induced model of decidualization. Progesterone significantly inhibited AR protein expression, whereas estrogen dramatically elevated AR abundance in the stroma of ovariectomized mouse uteri. Taken together, our results are the first to demonstrate that decidualization and progesterone significantly inhibited the AR protein expression in vivo, whereas estrogen increased AR protein levels in the stromal cells of mouse uteri. These responses might be advantageous for the proliferation and differentiation of uterine stroma and for embryo implantation during early pregnancy.
Asunto(s)
Núcleo Celular/metabolismo , Decidua/metabolismo , Regulación de la Expresión Génica/fisiología , Embarazo/metabolismo , Receptores Androgénicos/biosíntesis , Animales , Decidua/citología , Femenino , Masculino , RatonesRESUMEN
BACKGROUND: Di(2-ethylhexyl) phthalate (DEHP) exposure reduces embryo implantations, increases embryonic loss, and decreases fetal body weights. However, whether it is associated with the alteration of luteal function remains unknown. Thus, our aim in this study was to explore the effect and mechanism of DEHP on luteal function in pregnant mice in vivo. METHODS: Mice were administered DEHP by gavage at 125, 250, 500 mg/kg/day from gestational days (GD) 1 to 9 or 13. Levels of serum progesterone and estradiol were measured by radioimmunoassay. The numbers and sizes of corpora lutea were calculated by ovarian histomorphology. Steroidogenic enzymes were assessed by qRT-PCR. CD31 protein was detected by immunocytochemistry, and prostaglandin F2alpha (PGF2alpha) levels were evaluated by enzyme immunoassay. RESULTS: Treatment with DEHP significantly inhibited progesterone secretion in pregnant mice in a dose-dependent manner but did not inhibit estradiol production on GD 9 and 13. Treatment also showed concomitant decreases in transcript levels for key steroidogenic enzymes (CYP11A, 3ß-HSD, and StAR) on GD 13. Furthermore, DEHP administration significantly reduced the numbers and sizes of corpora lutea on GD 13. No significant changes in the ratio of ovary weight vs. body weight were observed between the control group and treated animals on GD 9 and 13. In addition, treatment with DEHP significantly inhibited CD31 expression of corpora lutea, whereas plasma PGF2alpha levels in DEHP treatment groups were significantly higher compared with the control groups on GD 9 and 13. CONCLUSIONS: The results show DEHP significantly inhibits luteal function of pregnant mice in vivo, with a mechanism that seems to involve the down-regulation of progesterone and steroidogenic enzymes message RNA, the decrease in CD31 expression, and the increase in PGF2alpha secretion.
Asunto(s)
Dietilhexil Ftalato/toxicidad , Dinoprost/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Animales , Cuerpo Lúteo/anatomía & histología , Cuerpo Lúteo/efectos de los fármacos , Mantenimiento del Cuerpo Lúteo/efectos de los fármacos , Estradiol/sangre , Femenino , Técnicas para Inmunoenzimas , Inmunohistoquímica , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Tamaño de los Órganos , Ovario/anatomía & histología , Ovario/efectos de los fármacos , Ovario/metabolismo , Embarazo , Progesterona/sangreRESUMEN
Tea (Camellia sinensis (L.) Kuntze) is one of the most important economic plants in China, and has many benefits for human health. Anthracnose is one of the most serious diseases of tea in China, and control of the fungus is important since most Chinese cultivars are susceptible to it. The agent of tea anthracnose was initially described as Gloeosporium theae-sinensis I. Miyake in Japan, which was later transferred to Discula, but this taxonomic position remains problematic. To shed light on these taxonomic and phylogenetic issues, the tea anthracnose pathogens were re-studied. Combining the morphological characteristics and a multigene phylogenetic analysis of nrITS, nrLSU, rpb2, and tef1 sequence data, a new genus Sinodiscula was proposed to accommodate the causal fungi of tea anthracnose, including a new species Sinodiscula camellicola and a new combination Sinodiscula theae-sinensis. Furthermore, the pathogenicity of the pathogens was determined according to Koch's postulates. This study thoroughly resolves the long-standing taxonomic and phylogenetic problems of the tea anthracnose pathogens.
RESUMEN
More than 8 billion tons of plastics have been generated since 1950. About 80% of these plastics have been dumped in landfills or went into natural environments, resulting in ever-worsening contamination. Among various strategies for waste plastics processing (e.g., incineration, mechanical recycling, thermochemical conversion and electrocatalytic/photocatalytic techniques), photocatalysis stands out as a cost-effective, environmentally benign and clean technique to upcycle plastic waste at ambient temperature and pressure using solar light. The mild reaction conditions for photocatalysis enable the highly selective conversion of plastic waste into targeted value-added chemicals/fuels. Here, we for the first time summarize the recent development of photocatalytic plastic upcycling based on the chemical composition of photocatalysts (e.g., metal oxides, metal sulfides, non-metals and composites). The pros and cons of various photocatalysts have been critically discussed and summarized. At last, the future challenges and opportunities in this area are presented in this review.
RESUMEN
Foxtail millet (Setaria italica (L.) P. Beauv.) is an environmentally friendly crop that meets the current requirements of international food security and is widely accepted as a photosynthesis research model. However, whether exogenous sucrose treatment has a positive effect on foxtail millet growth remains unknown. Here, we employed physiological and molecular approaches to identify photosynthesis and source capacity associated with exogenous sucrose during the growth of Jingu 21 seedlings. RNA-seq analysis showed that some differentially expressed genes (DEGs) related to photosynthesis and carotenoid biosynthesis were induced by exogenous sucrose and that most of these genes were up-regulated. An increase in gas exchange parameters, chlorophyll content, and chlorophyll fluorescence of Jingu 21 was noted after exogenous sucrose addition. Furthermore, exogenous sucrose up-regulated genes encoding sucrose and hexose transporters and enhanced starch and sucrose metabolism. More DEGs were up-regulated by sucrose, the nonstructural carbohydrate (NSC) content in the leaves increased and energy metabolism and sucrose loading subsequently improved, ultimately enhancing photosynthesis under normal and dark conditions. Further analysis revealed that WRKYs, ERFs, HY5, RAP2, and ABI5 could be key transcription factors involved in growth regulation. These results indicate that exogenous sucrose affects the normal photosynthetic performance of foxtail millet by increasing NSC transport and loading. They improve our understanding of the molecular mechanisms of the effects of exogenous sucrose on photosynthesis in foxtail millet, providing an effective measure to enhance source-sink relationships and improve yield.
RESUMEN
Phyllosticta (Phyllostictaceae, Botryosphaeriales) species are widely distributed globally and constitute a diverse group of pathogenic and endophytic fungi associated with a broad range of plant hosts. In this study, four new species of Phyllosticta, i.e. P. endophytica, P. jiangxiensis, P. machili, and P. xinyuensis, were described using morphological characteristics and multi-locus phylogeny based on the internal transcribed spacer region (ITS) with intervening 5.8S rRNA gene, large subunit of rRNA gene (nrLSU), translation elongation factor 1-alpha gene (tef1), actin gene (act), and glyceraldehyde-3-phosphate dehydrogenase gene (gapdh). Phyllosticta machili is the first species of this genus reported to infect plants of the Machilus genus.
RESUMEN
OBJECTIVE: To investigate the effects of focused ultrasound ablation (FUSA) versus conventional myomectomy on pelvic adhesions and fertility in the treatment of uterine fibroids. METHODS: The clinical data of 114 patients with uterine fibroids admitted to Northwest Women's and Children's Hospital from February 2020 to January 2023 were retrospectively analyzed, among which 61 cases were treated with FUSA and 53 cases received myomectomy. The length of surgery, bleeding, hospitalization days, incidence of pelvic adhesions, and ovarian reserve function indexes (FSH (Follicle Stimulating Hormone), LH (Luteinizing Hormone) and E2 (Estradiol)) were compared between the two groups. RESULTS: Compared to the myomectomy group, the FUSA group had shorter operation time (P<0.001), no bleeding (P<0.001), less hospitalization (P<0.001), lower incidence of pelvic adhesion (P = 0.020), and less impairment of ovarian reserve function (Increased FSH, LH and E2, all P<0.001). Logistic regression analysis showed that the maximum diameter of leiomyoma ≥5 cm (P = 0.008), the number of pregnancies ≥3 (P = 0.003) and intraoperative hemorrhage (P = 0.004) were independent risk factors for pelvic adhesion. CONCLUSIONS: FUSA is a safe and effective non-invasive method for the treatment of uterine fibroids that reduces postoperative complications and protects fertility potential, especially for female patients with fertility concerns. Future studies need to overcome existing limitations to improve reliability of evidence.
RESUMEN
Globally, the species of Amanita are key components of ectomycorrhizal ecosystems. Some of them are widely known as poisonous or edible fungi. Although many new Amanita species from China have been described, the species diversity of Yanshan Mountains remains unknown. We here describe three new species, namely, A. borealis sp. nov. (Sect. Amanita), A. brunneola sp. nov. (Sect. Caesareae), and A. yanshanensis sp. nov. (Sect. Validae), based on morphological observations and molecular phylogenetic analyses. In addition, nine known species, namely, A. caesareoides (Sect. Caesareae), A. chiui (Sect. Vaginatae), A. muscaria (Sect. Amanita), A. oberwinklerana (Sect. Roanokenses), A. ovalispora (Sect. Vaginatae), A. subglobosa (Sect. Amanita), A. subjunquillea (Sect. phalloideae), A. vaginata var. vaginata (Sect. Vaginatae), and A. virosa (Sect. phalloideae), were reported from Yanshan Mountains for the first time. Our results emphasize that China has a high diversity of Amanita species and that additional studies are required to understand the exact species number. These findings play a crucial role in Amanita toxin research and ecological conservation. This study investigated the areas where Amanita species-related research is lacking. The study also attempted to better understand Amanita distribution and thus contribute to related research. This study enriches the species diversity of Amanita in Yanshan Mountains and offers additional data supporting the macrofungal systematics, toxin research, and diversity and ecological studies of Amanita in future studies.
RESUMEN
Both Orthohantaviruses (HV) and Whenzhou Mammarenaviruses (WENV) are rodents borne viruses, allowing them to spread simultaneously in the same area and infect humans. To explore the potential threat of HV and WENV to public health safety, an environmental and laboratory investigation was conducted in 2020-2021, in Jiangxi province, China. A total of 461 small mammals of 7 species and paired sera from 43 suspected HFRS cases were collected from Jiangxi Province, China. Viral genomic RNA and specific antibodies against HV and WENV were detected to evaluate the epidemic situation of the two viruses. Hantaan virus (HTNV), seoul virus (SEOV) and WENV RNA were detected in the lungs of the captured mammals, which resulted 4.1% and 7.4% of HV and WENV RNA positive respectively. Co-infections of WENV and SEOV were detected from Rattus norvegicus, Mus musculus and Rattus flavipectus with an overall co-infection rate of 0.65%. The detection rates of antibodies in the blood against HV and WENV were 11.9% (55/461), and 13.2% (61/461) respectively. The prevalence of viral infection and viral genetic characters varied among the selected areas. In the paired sera of 43 suspected HFRS cases, 38 were with HV infection, 11 were with WENV IgG, and 7 with a 4-fold or more of WENV IgG titer elevation. These results revealed the fact of the co-circulating and coinfection of HV and WENV in the same area at the same time, which might impact on public health safety.
RESUMEN
Background: To evaluate the diagnosis value of the microRNA-200 family in ovarian cancer patients. However, there is much controversy regarding the diagnosis of miR-200. Therefore, it is necessary to use meta method to further confirm the significance of diagnosis role of the miR-200 family tumor marker series in ovarian cancer. Methods: We performed a careful literature search of the PubMed, EMBASE, and Web of Science databases and search language is English for articles related to ovarian cancer diagnose and the miR-200 family. The retrieval period was from the date of establishment of the database until September 20, 2021. The search keywords included microR-200, microR-200a, microR-200b, microR-200c, ovarian cancer, ovarian carcinoma, ovarian tumor, and sensitivity (SEN), specificity (SPE), area under the curve (AUC) were then calculated to estimate the diagnostic accuracy of the miR-200 family, and meta-analysis was performed using Stata 15.0 software. Results: Five articles were included in the meta-analysis. The diagnostic value of miR-200a in epithelial ovarian cancer (EOC) was expressed as 0.76 (95% CI: 0.67-0.84) by SEN; the combined SPE was 0.71 (95% CI: 0.49-0.86); the pooled AUC was 0.79 (95% CI: 0.76-0.83). The diagnostic value of miR-200b in EOC was expressed by SEN of 0.84 (95% CI: 0.76-0.90) and SPE of 0.73 (95% CI: 0.48-0.88). Combined AUC was 0.86 (95% CI: 0.83-0.89). The diagnostic value of miR-200c in EOC was 0.90 (95% CI:0.69-0.97), and the SPE was 0.87 (95% CI: 0.37-0.99). Combined AUC was 0.94 (95% CI: 0.92-0.96). Discussion: The miR-200 family may be a marker for the diagnosis evaluation of ovarian cancer patients.
RESUMEN
Nagrajomyces (incertae sedis, Ascomycota) is a monotypic genus with a previously unknown systematic position. In this report, two new species are proposed, Nagrajomycesfusiformis and Nagrajomyceslaojunshanensis. These new taxa are proposed based on morphological characteristics evident via light microscopy and molecular data. Multi-locus phylogenetic analyses (ITS rDNA, nrLSU rDNA, RPB2, and TEF1-α) show that specimens recently collected in Yunnan Province, China are closely related to Gnomoniaceae. Both new species and known species were discovered repeatedly in their asexual developmental form exclusively on twigs of Rhododendron spp. (Ericaceae). This indicates a host specificity of Nagrajomyces spp. for species of Rhododendron.
RESUMEN
This experiment was conducted to study the effects of mesotrione on the control efficiency and chlorophyll fluorescence parameters of Chenopodium album. Simulating three rainfall intensities of 2 mm/h (light rain), 6 mm/h (moderate rain) and 10 mm/h (heavy rain) at different interval times (0.5 h, 1 h, 2 h, 4 h) to analyze variable regulation of the control effect, the photosynthetic pigment content and chlorophyll fluorescence parameters of C. album after spraying mesotrione. With the extension of rainfall time interval, the inhibition rate of plant height, plant control effect and fresh weight control effect of C. album were gradually increased, the inhibition effect of rainfall on the efficacy was gradually decreased, at the same time, the contents of chlorophyll a, chlorophyll b, carotenoids, the maximum photochemical quantum efficiency (Fv/Fm), the actual photochemical quantum yield (Y (II)) and quantum yield (Y (NO)) production of regular energy consumption of C. album were also increased, while the nonregulatory energy decreased gradually. The results showed that the contents of chlorophyll a and chlorophyll b in leaves of C. album increased significantly by 35.63% and 35.38% compared with the control under the condition of simulating 6 mm/h in interval 1 hour. The study suggested that simulating 10 mm/h rainfall intensity had the greatest effect on C. album, the photosynthetic pigment content, Fv/Fm and Y (II) of leaves were significantly higher than those in the control groups under 0.5 h, 1 h and 2 h interval treatments. The carotenoid content was the lowest and Y (NO) was the largest under the 4 h interval treatment. As is displayed that rainfall reduced the weed control effect in the aspect of controlling C. album on mesotrione, which is partly contributed to increase photosynthetic pigment content and enhance the PS II photochemical activity. In conclusion, the rain intensity of ≤2 mm/h did not affect the control effect of mesotrione on C. album. At 6 mm/h within 1 h after treatment, the control effect of fresh weight was significantly reduced by more than 7.14%, and at 10 mm/h within 2 h, the control effect was significantly reduced by more than 14.78%.
Asunto(s)
Chenopodium album , Clorofila/química , Clorofila A , Ciclohexanonas , Fluorescencia , Fotosíntesis , Hojas de la Planta/fisiologíaRESUMEN
A hollow core-shell potassium phosphomolybdate (KMoP)@cadmium sulfide (CdS)@bismuth sulfide (Bi2S3) Z-scheme tandem heterojunction is fabricated by a simple hydrothermal strategy and kept in a water bath to continue the reaction. At the same time, the ternary structure combined Keggin-type polyoxometalate with two photosensitive sulfide semiconductors to form a stable hollow core-shell heterojunction. KMoP@CdS@Bi2S3 with a narrow band gap of â¼ 1.2 eV also has excellent photothermal performance, which may further promote photocatalytic efficiency. The hollow core-shell KMoP@CdS@Bi2S3 tandem heterojunction shows excellent H2 production performance, CrVI reduction ability and photocatalytic degradation performance of highly toxic tetracycline (TC). Under visible light irradiation, the photocatalytic H2 generation rate of the KMoP@CdS@Bi2S3 tandem heterojunction reaches 831 µmol h-1, which is 103 times higher than that of pristine KMoP. The photocatalytic reduction efficiency of CrVI and degradation efficiency of TC are as high as 95.5 and 97.51%, â¼4 times higher than that of KMoP. The boosted photocatalytic performance can be ascribed to the formation of core-shell Z-scheme tandem heterojunctions favoring spatial charge separation and the narrow band gap, which extends the photoresponse to visible light/NIR regions. When TC and CrVI exist at the same time, the reduction efficiency of CrVI can be as high as 99.64% because the intermediate of TC degradation can promote the reduction of CrVI. In addition, the photocatalytic performance of the KMoP@CdS@Bi2S3 heterojunction remains nearly constant after 4 recycles, which indicates high stability. The design strategy may provide new insights for preparing other high-performance core-shell tandem heterojunction photocatalysts for solar energy conversion.
Asunto(s)
Cadmio , Potasio , Bismuto , Compuestos de Cadmio , Catálisis , Molibdeno , Ácidos Fosfóricos , SulfurosRESUMEN
Species of the genus Russula are key components of ectomycorrhizal ecosystems worldwide, some of which are famous edible fungi. Although many new species have been described in China, their diversity in North China is still poorly known. Based on the morphology observation of specimens and molecular phylogenetic analyses, combined with the current classification frame of Russula, six new species of Russula subgenus Russula are proposed from the Yanshan Mountains in northern Beijing and northern Hebei Province of China in this study: viz. Russula miyunensis (subsection Chamaeleontinae), R. plana (subsection Chamaeleontinae), R. sinoparva (subsection Puellarinae), R. sinorobusta (subsection Puellarinae), R. subversatilis (subsection Roseinae), and R. yanshanensis (subsection Puellarinae). This is the first report of the species of Russula subgenus Russula from the Yanshan Mountains. This study enriches the species diversity of Russula in North China and provides new data support for the systematic study of Russula in subsequent research, including research and development on edibility.
RESUMEN
BACKGROUND: Chikungunya virus (CHIKV) reemerged and caused millions of human infections since 2004. The disease could be established, when the virus has been introduced to areas where the appropriate vectors are endemic. The differential diagnosis of CHIKV infection varies based on place of residence, travel history, and exposures. Serological tests are commonly used to diagnose CHIKV infection, but their availability and assessments of the performance of the diagnostics have been limited. OBJECTIVES: To develop and evaluate antibodies detection methods for chikungunya diagnosis and serological investigation. METHODS: Recombinant E2 protein based IgM capture enzyme-linked immunosorbent assay (Mac-ELISA) and double antigen sandwich ELISA (Das-ELISA) for detection of antibodies to Chikungunya virus were developed and evaluated. The repeatability was evaluated by testing of three reference sera at single dilutions in triplicated for 5 times. The sensitivity, specificity, accuracy, and agreement of the MAC-ELISA and Das-ELISA were obtained by comparing the detection results of 225 serum samples (45 positive; 180 negative) with a real-time RT-PCR assay and an IFA commercial tests manufactured by Euroimmun. RESULTS: The established ELISA assays were standardized by determining the optimal concentrations of the key reagents. The coefficient values of repeat testing were within 10% and 20% for intraassay and interassay precision, respectively. A sensitivity of 60.0% and 52.5%, a specificity of 96.2% and 96.8%, and an accuracy of 89.8% and 88.9% were obtained for the Mac-ELISA and Das-ELISA, respectively, when compared to a CHIKV qRT-PCR method. And a sensitivity of 100%, a specificity of 97.5% and 99.5%, and an accuracy of 97.8% and 99.6% were yielded respectively when using the IIFT as a reference method, which showed a highly consistence to the commercial IIFT assay with a Kappa value greater than 0.90. CONCLUSIONS: The Mac-ELISA and Das-ELISA based on recombinant E2 protein of CHIKV were developed and standardized, which could detect IgM or total antibodies against CHIKV in 2-3 hours with acceptable sensitivities and specificities. These assays can be used for laboratory diagnosis and serological investigation of CHIKV infections to evaluate the risk of CHIKV transmission.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Humanos , Virus Chikungunya/genética , Anticuerpos Antivirales , Inmunoglobulina M , Fiebre Chikungunya/epidemiología , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas Recombinantes , Sensibilidad y Especificidad , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
[This corrects the article DOI: 10.1016/j.bioactmat.2021.04.006.].
RESUMEN
Asherman's syndrome (AS), a leading cause of uterine infertility worldwide, is characterized by scarring of the uterine surfaces lacking endometrial epithelial cells, which prevents endometrial regeneration. Current research on cell therapy for AS focuses on mesenchymal and adult stem cells from the endometrium. However, insufficient number, lack of purity, and rapid senescence of endometrial epithelial progenitor cells (EEPCs) during experimental processes restrict their use in cell therapies. In this study, we induced human embryonic stem cells-9 (H9-ESC) into EEPCs by optimizing the induction factors from the definitive endoderm. EEPCs, which act as endometrial epithelial cells, accompanied by human endometrial stromal cells provide a niche environment for the development of endometrial membrane organoids (EMOs) in an in vitro 3D culture model. To investigate the function of EMOs, we transplanted tissue-engineered constructs with EMOs into an in vivo rat AS model. The implantation of EMOs into the damaged endometrium facilitates endometrial regeneration and angiogenesis. Implanting EMOs developed from human embryonic stem cells into the endometrium might prove useful for "endometrial re-engineering" in the treatment of Asherman's syndrome.