Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Gene Med ; 26(6): e3708, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837511

RESUMEN

BACKGROUND: Lysophosphatidic acid (LPA) is a small bioactive lipid which acts as a potent regulator in various tumor progressions through six G-protein-coupled receptors (LPA1-LPA6). Our previous study demonstrated that the LPA-producing enzyme, autotaxin (ATX), was upregulated in esophageal squamous cell carcinoma (ESCC) and ATX high expression levels indicated a poor prognosis. Esophageal squamous cell carcinoma is a type of malignant tumor which originates from epithelial cells. Its progression can be affected by the interaction between cancer cells and normal cells. However, the impact of LPA on the interaction between esophageal epithelial cells and cancer cells in the development of ESCC remains uncertain. METHODS: MTS and Edu assays were performed to determine ESCC cell proliferation in culture medium (CM) derived from LPA-stimulated esophageal epithelial cells (Het-1a). A wound healing assay, transwell migration and an invasion assay were performed to assess the metastatic ability of ESCC cells. Cytokine array analysis was conducted to detect the differentially secreted cytokines in CM. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to uncover the pathways and cytokines that are influenced by LPA in ESCC. Immunohistochemical staining was employed to measure the expression of ATX and CCL2 in early-stage ESCC. Quantitative real-time PCR, western blot, enzyme-linked immunosorbent assay and an antibody neutralization assay were employed to measure the mechanism of LPA-mediated communication between epithelial cells and cancer cells. RESULTS: Functional experiments showed that exposing ESCC cancer cells to CM from LPA-treated Het-1a results in promoting proliferation, migration, invasion and epithelial-mesenchymal transition processes. Using cytokine array analysis, we discovered that LPA triggers the release of multiple cytokines from epithelial cells. After screening of the TCGA and GEO databases, CCL2 was identified and found to be correlated with ATX expression in ESCC. Furthermore, CCL2 levels in both mRNA expression and secretion were observed to be upregulated in epithelial cells upon stimulation with LPA. Blocking CCL2 effectively reduced the pro-migration influence of CM derived from LPA-treated Het-1a. Mechanism studies have demonstrated that LPA activated the NF-κB signaling pathway through LPA1/3, ultimately causing an increase in CCL2 expression and secretion in Het-1a. CONCLUSIONS: Our findings, taken together, demonstrate that CM from LPA-treated esophageal epithelial cells plays a significant role in promoting the progression of ESCC, with CCL2 acting as the primary regulator.


Asunto(s)
Movimiento Celular , Proliferación Celular , Quimiocina CCL2 , Células Epiteliales , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Regulación Neoplásica de la Expresión Génica , Lisofosfolípidos , Humanos , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Progresión de la Enfermedad , Transducción de Señal/efectos de los fármacos , Esófago/metabolismo , Esófago/patología , Esófago/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos
2.
Acta Pharmacol Sin ; 45(1): 87-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37679644

RESUMEN

Recent evidence shows a close link between Parkinson's disease (PD) and cardiac dysfunction with limited treatment options. Mitophagy plays a crucial role in the control of mitochondrial quantity, metabolic reprogramming and cell differentiation. Mutation of the mitophagy protein Parkin is directly associated with the onset of PD. Parkin-independent receptor-mediated mitophagy is also documented such as BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and FUN14 domain containing 1 (FUNDC1) for receptor-mediated mitophagy. In this study we investigated cardiac function and mitophagy including FUNDC1 in PD patients and mouse models, and evaluated the therapeutic potential of a SGLT2 inhibitor empagliflozin. MPTP-induced PD model was established. PD patients and MPTP mice not only displayed pronounced motor defects, but also low plasma FUNDC1 levels, as well as cardiac ultrastructural and geometric anomalies (cardiac atrophy, interstitial fibrosis), functional anomalies (reduced E/A ratio, fractional shortening, ejection fraction, cardiomyocyte contraction) and mitochondrial injury (ultrastructural damage, UCP2, PGC1α, elevated mitochondrial Ca2+ uptake proteins MCU and VDAC1, and mitochondrial apoptotic protein calpain), dampened autophagy, FUNDC1 mitophagy and apoptosis. By Gene set enrichment analysis (GSEA), we found overtly altered glucose transmembrane transport in the midbrains of MPTP-treated mice. Intriguingly, administration of SGLT2 inhibitor empagliflozin (10 mg/kg, i.p., twice per week for 2 weeks) in MPTP-treated mice significantly ameliorated myocardial anomalies (with exception of VDAC1), but did not reconcile the motor defects or plasma FUNDC1. FUNDC1 global knockout (FUNDC1-/- mice) did not elicit any phenotype on cardiac geometry or function in the absence or presence of MPTP insult, but it nullified empagliflozin-caused cardioprotection against MPTP-induced cardiac anomalies including remodeling (atrophy and fibrosis), contractile dysfunction, Ca2+ homeostasis, mitochondrial (including MCU, mitochondrial Ca2+ overload, calpain, PARP1) and apoptotic anomalies. In neonatal and adult cardiomyocytes, treatment with PD neurotoxin preformed fibrils of α-synuclein (PFF) caused cytochrome c release and cardiomyocyte mechanical defects. These effects were mitigated by empagliflozin (10 µM) or MCU inhibitor Ru360 (10 µM). MCU activator kaempferol (10 µM) or calpain activator dibucaine (500 µM) nullified the empagliflozin-induced beneficial effects. These results suggest that empagliflozin protects against PD-induced cardiac anomalies, likely through FUNDC1-mediated regulation of mitochondrial integrity.


Asunto(s)
Enfermedad de Parkinson , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Adulto , Humanos , Ratones , Animales , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Calpaína , Remodelación Ventricular , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas , Atrofia , Fibrosis , Proteínas de la Membrana/metabolismo
3.
Environ Res ; 232: 115942, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37080268

RESUMEN

Lung cancer is one of the leading causes of death in both males and females, and it is the first causes of cancer-related deaths. Chemotherapy, surgery and radiotherapy are conventional treatment of lung cancer and recently, immunotherapy has been also appeared as another therapeutic strategy for lung tumor. However, since previous treatments have not been successful in cancer therapy and improving prognosis and survival rate of lung tumor patients, new studies have focused on gene therapy and targeting underlying molecular pathways involved in lung cancer progression. Nanoparticles have been emerged in treatment of lung cancer that can mediate targeted delivery of drugs and genes. Nanoparticles protect drugs and genes against unexpected interactions in blood circulation and improve their circulation time. Nanoparticles can induce phototherapy in lung cancer ablation and mediating cell death. Nanoparticles can induce photothermal and photodynamic therapy in lung cancer. The nanostructures can impair metastasis of lung cancer and suppress EMT in improving drug sensitivity. Metastasis is one of the drawbacks observed in lung cancer that promotes migration of tumor cells and allows them to establish new colony in secondary site. EMT can occur in lung cancer and promotes tumor invasion. EMT is not certain to lung cancer and it can be observed in other human cancers, but since lung cancer has highest incidence rate, understanding EMT function in lung cancer is beneficial in improving prognosis of patients. EMT induction in lung cancer promotes tumor invasion and it can also lead to drug resistance and radio-resistance. Moreover, non-coding RNAs and pharmacological compounds can regulate EMT in lung cancer and EMT-TFs such as Twist and Slug are important modulators of lung cancer invasion that are discussed in current review.


Asunto(s)
Neoplasias Pulmonares , Femenino , Humanos , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Nanotecnología , Transición Epitelial-Mesenquimal/genética
4.
J Nanobiotechnology ; 21(1): 45, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755314

RESUMEN

Although temozolomide (TMZ) provides significant clinical benefit for glioblastoma (GBM), responses are limited by the emergence of acquired resistance. Here, we demonstrate that exosomal circCABIN1 secreted from TMZ-resistant cells was packaged into exosomes and then disseminated TMZ resistance of receipt cells. CircCABIN1 could be cyclized by eukaryotic translation initiation factor 4A3 (EIF4A3) and is highly expressed in GBM tissues and glioma stem cells (GSCs). CircCABIN1 is required for the self-renewal maintenance of GSCs to initiate acquired resistance. Mechanistically, circCABIN1 regulated the expression of olfactomedin-like 3 (OLFML3) by sponging miR-637. Moreover, upregulation of OLFML3 activating the ErbB signaling pathway and ultimately contributing to stemness reprogramming and TMZ resistance. Treatment of GBM orthotopic mice xenografts with engineered exosomes targeting circCABIN1 and OLFML3 provided prominent targetability and had significantly improved antitumor activity of TMZ. In summary, our work proposed a novel mechanism for drug resistance transmission in GBM and provided evidence that engineered exosomes are a promising clinical tool for cancer prevention and therapy.


Asunto(s)
Neoplasias Encefálicas , Exosomas , Glioblastoma , MicroARNs , Humanos , Animales , Ratones , Temozolomida/farmacología , Glioblastoma/metabolismo , Exosomas/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/metabolismo , Transducción de Señal , Resistencia a Antineoplásicos , Ensayos Antitumor por Modelo de Xenoinjerto , Glicoproteínas/metabolismo , Glicoproteínas/uso terapéutico , Péptidos y Proteínas de Señalización Intercelular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
5.
Cell Mol Neurobiol ; 42(7): 2245-2256, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33993369

RESUMEN

Circular RNAs (circRNAs) have pivotal functions in regulating diverse biological processes of human tumors, including glioma. Herein, a novel circRNA epidermal growth factor receptor (circ-EGFR, hsa_circ_0080223) was researched in glioma. The molecular expression levels were analyzed via quantitative real-time polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8) and colony formation assays were conducted to assess cell proliferation. Apoptosis was analyzed using flow cytometry. Cell migration and invasion were examined via transwell assay. Interaction relations between targets were verified using dual-luciferase reporter assay. Tumor Suppressor Candidate 2 (TUSC2) protein expression was examined by Western blot. In vivo experiment was performed by establishing xenograft model in mice. The qRT-PCR showed the downregulation of circ-EGFR and TUSC2 but the upregulation of microRNA-183-5p (miR-183-5p) in glioma samples. In vitro assays revealed that circ-EGFR overexpression induced the repression of cell proliferation, migration, and invasion but the promotion of apoptosis. Circ-EGFR was identified as a sponge of miR-183-5p and circ-EGFR-mediated glioma progression inhibition was abolished by miR-183-5p downregulation. Additionally, miR-183-5p targeted TUSC2 and miR-183-5p inhibitor impeded the development of glioma by upregulating the expression of TUSC2. Furthermore, circ-EGFR could regulate the TUSC2 level by sponging miR-183-5p. Glioma growth in vivo was also reduced by circ-EGFR via targeting the miR-183-5p/TUSC2 axis. Altogether, our results suggested that circ-EGFR inhibited the malignant progression of glioma by regulating the levels of miR-183-5p and TUSC2. Circ-EGFR may be a useful therapeutic target to antagonize the glioma progression.


Asunto(s)
Glioma , MicroARNs , Animales , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , ARN Circular , Proteínas Supresoras de Tumor
6.
Cell Commun Signal ; 20(1): 71, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614513

RESUMEN

PURPOSE: Cholecystectomy (XGB) is widely recognized as a risk factor for colon cancer (CC). Continuous exposure of the colonic epithelium to deoxycholic acid (DCA) post-XGB may exert cytotoxic effects and be involved in the progression of CC. However, the functions of the XGB-induced DCA increase and the underlying mechanism remain unclear. METHODS: Colitis-associated CC (CAC) mouse models constructed by AOM-DSS inducement were used to confirm the effect of XGB on the CC progression. Hematoxylin & eosin staining was performed to assess the tumor morphology of CAC mouse models tissues. Various cell biological assays including EdU, live-cell imaging, wound-healing assays, and flow cytometry for cell cycle and apoptosis were used to evaluate the effect of DCA on CC progression. The correlation among XGB, DCA, and CC and their underlying mechanisms were detected with immunohistochemistry, mass spectrometry, transcriptome sequencing, qRT-PCR, and western blotting. RESULTS: Here we proved that XGB increased the plasma DCA level and promoted colon carcinogenesis in a colitis-associated CC mouse model. Additionally, we revealed that DCA promoted the proliferation and migration of CC cells. Further RNA sequencing showed that 120 mRNAs were upregulated, and 118 downregulated in DCA-treated CC cells versus control cells. The upregulated mRNAs were positively correlated with Wnt signaling and cell cycle-associated pathways. Moreover, DCA treatment could reduced the expression of the farnesoid X receptor (FXR) and subsequently increased the levels of ß-Catenin and c-Myc in vitro and in vivo. Moreover, the FXR agonist GW4064 decreased the proliferation of CC cells by repressing the expression of ß-catenin. CONCLUSION: We concluded that XGB-induced DCA exposure could promote the progression of CC by inhibiting FXR expression and enhancing the Wnt-ß-catenin pathway. Video Abstract.


Asunto(s)
Colecistectomía , Neoplasias del Colon , Ácido Desoxicólico , Vía de Señalización Wnt , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Colecistectomía/efectos adversos , Colitis/genética , Neoplasias del Colon/etiología , Neoplasias del Colon/patología , Ácido Desoxicólico/metabolismo , Ácido Desoxicólico/farmacología , Regulación Neoplásica de la Expresión Génica , Ratones , beta Catenina/metabolismo
7.
Exp Cell Res ; 375(1): 73-81, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30586549

RESUMEN

Glioblastoma multiforme (GBM) is the most malignant tumor of the central nervous system, and chemoresistance blunts the effect of temozolomide (TMZ) in the treatment of GBM. Clarifying the underlying mechanism of chemoresistance might yield novel strategies to improve the patients' response to chemotherapeutics. Mounting evidence indicates that microRNAs (miRNAs) are involved in chemoresistance and tumorigenesis. At present, miR-7-5p has been recognized as a tumor suppressor involved in multiple cancers. However, the biological effects of miR-7-5p in TMZ resistance have not been illuminated. In this study, we used RNA sequencing and high-throughput screening techniques, which revealed that miR-7-5p is significantly downregulated in TMZ resistant LN229 cells (LN229/TMZ-R) compared to control cells (LN229), and low miR-7-5p expression was correlated with recurrence in GBM patients. Ectopic overexpression of miR-7-5p sensitized LN229/TMZ-R cells to TMZ and suppressed the stemness of glioblastoma stem cells (GSCs). Further experiments demonstrated that miR-7-5p exerts its role by directly targeting the 3'-untranslated region of Yin Yang 1 (YY1). Our findings suggest that combinational use of miR-7-5p and TMZ might be a promising therapeutic strategy to increase the long-term drug response in GBM patients.


Asunto(s)
Glioblastoma/tratamiento farmacológico , MicroARNs/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Temozolomida/farmacología , Factor de Transcripción YY1/genética , Regiones no Traducidas 3'/genética , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/patología , Xenoinjertos , Humanos , Ratones , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/efectos de los fármacos , Transducción de Señal/genética
8.
Int J Med Sci ; 16(9): 1231-1237, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31588188

RESUMEN

Early diagnosis of colorectal cancer (CRC) is clinically critical but technically challenging, especially in a minimal-invasive way. Emerging evidence suggests that exosome-encapsulated microRNAs (miRNAs) is a kind of promising cancer biomarker. Here we investigated the predictive potential of exosomal miR-92b in plasma samples obtained from 114 participants [40 CRC, 22 colorectal adenomas (CA), 52 non-neoplasm controls (NC)] by RT-qPCR. We found that exosomal miR-92b level was significantly down-regulated in CRC patients compared with CA and NC patients, especially in CRC at stage II, regardless of lymph node metastasis and invasive depth. The AUC in distinguishing CRC, CA and NC from each other ranged from 0.631 to 0.793, while a higher AUC of 0.830 was achieved in differentiating CRC at clinical stage II/III from NC individuals. Additionally, a logistic model integrating miR-92b with age showed a significantly improved accuracy in distinguishing CRC patients from NC (AUC increased from 0.793 to 0.867). Taken together, our findings indicated that decreased expression of exosome-derived miR-92b in plasma is a promising biomarker for early detection of CRC.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Exosomas/genética , MicroARNs/sangre , Adenoma/genética , Adenoma/patología , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Lesiones Precancerosas/genética
10.
J Clin Anesth ; 93: 111356, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38056052

RESUMEN

STUDY OBJECTIVE: This study aimed to compare the time to emergence from general anesthesia with remimazolam versus propofol in patients undergoing cerebral endovascular procedures. DESIGN: A prospective, double-blind, randomized controlled, non-inferiority trial. SETTING: An academic hospital. PATIENTS: Adult patients scheduled for cerebral endovascular procedures. INTERVENTIONS: Patients were randomized at a 1:1 ratio to undergo surgery under general anesthesia with remimazolam (0.1 mg kg-1 for induction and 0.3-0.7 mg kg-1 h-1 for maintenance) or propofol (1-1.5 mg kg-1 for induction and 4-10 mg kg-1 h-1 for maintenance). MEASUREMENTS: The primary outcome was the time to emergence from anesthesia. The non-inferiority margin was -2.55 min in group difference. Major secondary outcomes included hypotension during induction, incidence of postoperative delirium and Modified Rankin Scale (mRs) at 30 days and 90 days after surgery. MAIN RESULTS: Of the 142 randomized patients, 129 completed the trial. In the modified intention-to-treat analysis, the mean time to emergence from anesthesia was 16.1 [10.4] min in the remimazolam group vs. 19.0 [11.2] min in the propofol group. The group difference was -2.9 min [95% CI -6.5, 0.7] (P = 0.003 for non-inferiority). The remimazolam group had lower rate of hypotension during induction (11.3% vs 25.4%, P = 0.03) and use of vasopressors during surgery (29.6% vs 62.0%, P < 0.001). The two groups did not differ in postoperative delirium and mRs at 30 and 90 days after surgery. CONCLUSIONS: In patients undergoing cerebral endovascular procedures, remimazolam did not increase the time from anesthesia vs propofol.


Asunto(s)
Delirio del Despertar , Hipotensión , Propofol , Adulto , Humanos , Propofol/efectos adversos , Estudios Prospectivos , Anestesia General/efectos adversos , Benzodiazepinas , Hipotensión/inducido químicamente , Hipotensión/epidemiología
11.
Eur J Pharmacol ; 966: 176340, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38244759

RESUMEN

Hinokitiol is a natural bioactive tropolone derivative isolated from Chamaecyparis obtusa and Thuja plicata, which exhibits promising potential in terms of antioxidant and anti-inflammatory properties and possesses potent iron-binding capacity. In this study, we aimed to investigate the potential role of hinokitiol in protecting against ethanol-induced gastric injury and elucidate the underlying mechanism. Our results demonstrated that hinokitiol effectively attenuated hemorrhagic gastric lesions, epithelial cell loss, and inflammatory response in mice with ethanol-induced gastric injury. Intriguingly, we found that ethanol exposure affects iron levels both in vivo and in vitro. Moreover, the disturbed iron homeostasis was involved in the development of ethanol-induced injury. Iron depletion was found to enhance defense against ethanol-induced damage, while iron repletion showed the opposite effect. To further explore the role of iron sequestration in the protective effects of hinokitiol, we synthesized methylhinokitiol, a compound that shields the iron binding capacity of hinokitiol with a methyl group. Interestingly, this compound significantly diminishes the protective effect against ethanol-induced injury. These findings collectively demonstrated that hinokitiol could potentially be used to prevent or improve gastric injury induced by ethanol through regulating cellular iron homeostasis.


Asunto(s)
Hierro , Tropolona , Tropolona/análogos & derivados , Ratones , Animales , Tropolona/farmacología , Etanol/efectos adversos , Antiinflamatorios , Monoterpenos/farmacología , Monoterpenos/uso terapéutico
12.
Exp Mol Med ; 55(6): 1203-1217, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37258577

RESUMEN

The tripartite motif (TRIM) 22 and mitogen-activated protein kinase (MAPK) signaling pathways play critical roles in the growth of glioblastoma (GBM). However, the molecular mechanism underlying the relationship between TRIM22 and MAPK signaling remains unclear. Here, we found that TRIM22 binds to exon 2 of the sphingosine kinase 2 (SPHK2) gene. An ERK1/2-driven luciferase reporter construct identified TRIM22 as a potential activator of MAPK signaling. Knockout and overexpression of TRIM22 regulate the inhibition and activation of MAPK signaling through the RING-finger domain. TRIM22 binds to Raf-1, a negative regulator of MAPK signaling, and accelerates its degradation by inducing K48-linked ubiquitination, which is related to the CC and SPRY domains of TRIM22 and the C1D domain of Raf-1. In vitro and in vivo, an SPHK2 inhibitor (K145), an ERK1/2 inhibitor (selumetinib), and the nonphosphorylated mutant Raf-1S338A inhibited GBM growth. In addition, deletion of the RING domain and the nuclear localization sequence of TRIM22 significantly inhibited TRIM22-induced proliferation of GBM cells in vivo and in vitro. In conclusion, our study showed that TRIM22 regulates SPHK2 transcription and activates MAPK signaling through posttranslational modification of two critical regulators of MAPK signaling in GBM cells.


Asunto(s)
Glioblastoma , Proteínas Quinasas Activadas por Mitógenos , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Glioblastoma/genética , Transducción de Señal , Línea Celular , Proliferación Celular , Antígenos de Histocompatibilidad Menor , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteínas Represoras/genética
13.
ACS Nano ; 17(20): 19914-19924, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37791763

RESUMEN

Venous thromboembolism (VTE) is the most fatal complication in cancer patients. Unfortunately, the frequent misdiagnosis of VTE owing to the lack of accurate and efficient evaluation approaches may cause belated medical intervention and even sudden death. Herein, we present a rapid, easily operable, highly specific, and highly sensitive procoagulant extracellular vesicle barcode (PEVB) assay composed of TiO2 nanoflower (TiNFs) for visually evaluating VTE risk in cancer patients. TiNFs demonstrate rapid label-free EV capture capability by the synergetic effect of TiO2-phospholipids molecular interactions and topological interactions between TiNFs and EVs. From ordinary plasma samples, the PEVB assay can evaluate potential VTE risk by integrating TiNFs-based EV capture and in situ EV procoagulant ability test with machine-learning-assisted clinical data analysis. We demonstrate the feasibility of this PEVB assay in VTE risk evaluation by screening 167 cancer patients, as well as the high specificity (97.1%) and high sensitivity (96.8%), fully exceeding the nonspecific and posterior traditional VTE test. Together, we proposed a TiNFs platform allowing for highly accurate and timely diagnosis of VTE in cancer patients.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Trombosis , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/complicaciones , Neoplasias/complicaciones
14.
Transl Oncol ; 37: 101756, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37595394

RESUMEN

Glioma is the most common tumor of the nervous system. The diffuse growth and proliferation of glioma poses great challenges for its treatment. Here, Transcriptomic analysis revealed that Rac GTPase activating protein 1 (RACGAP1) is highly expressed in glioma. RACGAP1 has been shown to play an important role in the malignant biological progression of a variety of tumors. However, the underlying role and mechanism in glioma remain poorly understood. By using quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry and Orthotopic mouse xenografts, we confirmed that knockdown of RACGAP1 impeded cell proliferation in glioma and prolonged the survival of orthotopic mice. Interestingly, we also found that inhibiting the expression of RACGAP1 reduced the expression of minichromosome maintenance 3 (MCM3) through RNA-seq and rescue assay, while Yin Yang 1 (YY1) transcriptionally regulated RACGAP1 expression. Furthermore, T7 peptide-decorated exosome (T7-exo) is regard as a promising delivery modality for targeted therapy of glioma, and the T7-siRACGAP1-exo significantly improved the survival time of glioma bearing mice. These results suggested that targeting RACGAP1 may be a potential strategy for glioma therapy.

15.
Int J Biol Sci ; 18(4): 1663-1676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280693

RESUMEN

Colon cancer (CC) is one of the most common malignances in digestive tract. M2-polarized macrophages within the tumor microenvironment could facilitate CC cell growth by transferring molecules via extracellular vesicles, but the mechanisms are not fully elucidated. The current study aims to identify the possible effectors in M2 macrophage-derived extracellular vesicles (M2-EVs) and reveal related molecular mechanisms. In our study, we validated the promotion effects of M2-EVs on the proliferation and motility of CC cells, which was found to be dependent on the EVs enclosed molecules by a mild EVs digestion assay. Then we found that miR-186-5p was enriched in M2-EVs and was responsible for the tumor promoting functions of M2-EVs. Furthermore, mechanism investigation revealed M2-EVs transferring miR-186-5p inhibited DLC1 expression by targeting its 3'UTR, and restored DLC1 successfully neutralized the tumor-promoting effects of M2-EVs transferring miR-186-5p via inhibiting the ß-catenin pathway. Our study revealed that M2-EVs facilitates the growth and motility of CC cells by delivering the enclosed miR-186-5p, which directly targets DLC1 mRNAs and facilitates their degradation, which could provide a potential biomarker and therapeutic target for CC.


Asunto(s)
Neoplasias del Colon , Vesículas Extracelulares , MicroARNs , Neoplasias del Colon/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Macrófagos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Microambiente Tumoral/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
16.
Cell Signal ; 93: 110286, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35192930

RESUMEN

Helicobacter pylori infection is a leading cause of gastric cancer (GC). However, the underlying mechanisms have not yet been fully elucidated. We aimed to identify microRNAs (miRNAs) regulated by H. pylori infection and their underlying mechanisms in gastric carcinogenesis. Using a mouse model, it was established that H. pylori infection inhibited autophagy in the gastric mucosa. Importantly, H. pylori infection decreased miR-1298-5p levels in human and mouse gastric tissues and human gastric cell lines. Furthermore, the downregulation of miR-1298-5p levels remarkably inhibited autophagy, ultimately increasing the intracellular H. pylori load, which was detected using a gentamicin protection assay. A series of in vitro assays showed that the downregulation of miR-1298-5p expression promoted GC cell proliferation, migration, and invasion. Mechanistically, using bioinformatics prediction, miRNA pull-down assays, and luciferase reporter assays, mitogen-activated protein kinase kinase 6 (MAP2K6) was found to be the direct target of miR-1298-5p, through which miR-1298-5p regulated autophagy and GC cell viability and motility. Moreover, MAP2K6/p38 mitogen-activated protein kinase (MAPK) axis was determined to be the downstream pathway of miR-1298-5p. These findings revealed that H. pylori infection was found to inhibit autophagy and promote tumor growth by regulating miR-1298-5p expression and the miR-1298-5p/MAP2K6/p38 MAPK axis might be a new avenue for the clinical management of H. pylori infection and H. pylori-associated GC.


Asunto(s)
Autofagia , Infecciones por Helicobacter , MAP Quinasa Quinasa 6 , MicroARNs , Neoplasias Gástricas , Autofagia/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Humanos , MAP Quinasa Quinasa 6/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología
17.
Biotechniques ; 73(2): 90-98, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35946315

RESUMEN

Extracellular vesicles (EVs) are small vesicles mediating intercellular communications that have been widely used in disease diagnosis. Extracting EVs from tissues is of great importance, but current approaches are finite and the EV yield is limited. Here, the authors introduced a new method to increase EV yield based on frozen sectioning. With a standardized, semiautomated tissue-slicing procedure in a cryostat, the authors successfully isolated EVs from hearts, kidneys and stomachs. The morphology, size distribution and purity of those isolated EVs were evaluated. Additionally, compared with the traditional scalpel section method, they confirmed the higher yield of tissue-derived EVs with the cryostat-based method. The authors believe that the new method they developed would largely facilitate the research and clinical application of EVs.


Asunto(s)
Vesículas Extracelulares , Secciones por Congelación
18.
Mol Ther Oncolytics ; 26: 413-428, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36159777

RESUMEN

Tripartite motif 22 (TRIM22) is an agonist of nuclear factor κB (NF-κB) that plays an important role in the proliferation and drug sensitivity of glioblastoma (GBM). However, the molecular mechanism underlying the protein network between TRIM22 and nuclear factor κB (NF-κB) in GBM remains unclear. Here, we found that knockout of TRIM22 effectively inhibited tumor proliferation and increased the sensitivity of GBM cells to temozolomide (TMZ) in vivo and in vitro. Moreover, TRIM22 forms a complex with cytosolic purine 5-nucleotidase (NT5C2) in GBM and regulates the ubiquitination of retinoic acid-inducible gene-I (RIG-I). TRIM22 promotes the K63-linked ubiquitination of RIG-I, while NT5C2 is responsible for K48-linked ubiquitination. This regulation directly affects the RIG-I/NF-κB/cell division cycle and apoptosis regulator protein 1 (CCAR1) signaling axis. Ubiquitin modification inhibitor of RIG-I restores the inhibition of tumor growth induced by TRIM22 knockout. The follow-up results showed that compared with patients with high TRIM22 expression, patients with low TRIM22 expression had a longer survival time and were more sensitive to treatment with TMZ. Our results revealed that the TRIM22-NT5C2 complex orchestrates the proliferation of GBM and benefits of TMZ through post-translational modification of RIG-I and the regulation of the RIG-I/NF-κB/CCAR1 pathway and is a promising target for single-pathway multi-target therapy.

19.
Neuro Oncol ; 24(7): 1056-1070, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34905060

RESUMEN

BACKGROUND: Compelling evidence suggests that glioblastoma (GBM) recurrence results from the expansion of a subset of tumor cells with robust intrinsic or therapy-induced radioresistance. However, the mechanisms underlying GBM radioresistance and recurrence remain elusive. To overcome obstacles in radioresistance research, we present a novel preclinical model ideally suited for radiobiological studies. METHODS: With this model, we performed a screen and identified a radiation-tolerant persister (RTP) subpopulation. RNA sequencing was performed on RTP and parental cells to obtain mRNA and miRNA expression profiles. The regulatory mechanisms among NF-κB, YY1, miR-103a, XRCC3, and FGF2 were investigated by transcription factor activation profiling array analysis, chromatin immunoprecipitation, western blot analysis, luciferase reporter assays, and the MirTrap system. Transferrin-functionalized nanoparticles (Tf-NPs) were employed to improve blood-brain barrier permeability and RTP targeting. RESULTS: RTP cells drive radioresistance by preferentially activating DNA damage repair and promoting stemness. Mechanistic investigations showed that continual radiation activates the NF-κB signaling cascade and promotes nuclear translocation of p65, leading to enhanced expression of YY1, the transcription factor that directly suppresses miR-103a transcription. Restoring miR-103a expression under these conditions suppressed the FGF2-XRCC3 axis and decreased the radioresistance capability. Moreover, Tf-NPs improved radiosensitivity and provided a significant survival benefit. CONCLUSIONS: We suggest that the NF-κB-YY1-miR-103a regulatory axis is indispensable for the function of RTP cells in driving radioresistance and recurrence. Thus, our results identified a novel strategy for improving survival in patients with recurrent/refractory GBM.


Asunto(s)
Glioblastoma , MicroARNs , Línea Celular Tumoral , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Tolerancia a Radiación/genética
20.
Front Pharmacol ; 13: 975291, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059990

RESUMEN

Glioblastoma (GBM) is the most malignant tumor of the central nervous system in adults. Irradiation (IR) and temozolomide (TMZ) play an extremely important role in the treatment of GBM. However, major impediments to effective treatment are postoperative tumor recurrence and acquired resistance to chemoradiotherapy. Our previous studies confirm that Yin Yang 1 (YY1) is highly expressed in GBM, whereby it is associated with cell dedifferentiation, survival, and therapeutic resistance. Targeted delivery of small interfering RNA (siRNA) without blood-brain barrier (BBB) restriction for eradication of GBM represents a promising approach for therapeutic interventions. In this study, we utilize the engineering technology to generate T7 peptide-decorated exosome (T7-exo). T7 is a peptide specifically binding to the transferrin receptor. T7-exo shows excellent packaging and protection of cholesterol-modified Cy3-siYY1 while quickly releasing payloads in a cytoplasmic reductive environment. The engineered exosomes T7-siYY1-exo could deliver more effciently to GBM cells both in vitro and in vivo. Notably, in vitro experiments demonstrate that T7-siYY1-exo can enhance chemoradiotherapy sensitivity and reverse therapeutic resistance. Moreover, T7-siYY1-exo and TMZ/IR exert synergistic anti-GBM effect and significantly improves the survival time of GBM bearing mice. Our findings indicate that T7-siYY1-exo may be a potential approach to reverse the chemoradiotherapy resistance in GBM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA