Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 19(2): 449-459, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29220164

RESUMEN

We investigated whether helicity and/or chirality of cellulose tris(phenylcarbamate) (CTPC) can transfer to noncharged, nonhelical oligo- and polyfluorenes when CTPC was employed as a solution processable homochiral platform of a D-glucose-skeletal polymer. Noticeably, CTPC revealed the solvent-driven, ambidextrous intermolecular helicity/chirality transfer capability to these fluorenes. The chiroptical inversion characteristics of circularly polarized luminescence (CPL) and the corresponding CD spectra were realized by solely choosing a proper achiral solvent and/or achiral cosolvent. When the solution of PF6 and CTPC in tetrahydrofuran (THF) was cast on a quartz substrate, the dissymmetry ratio of CPL (gCPL) from the polymer film showed gCPL = +2.1 × 10-3 at 429 nm. Conversely, when dichloromethane (DCM) was used as the solvent, the CPL sign was inverted to gCPL = -2.4 × 10-3 at 429 nm. The dissymmetry ratio of Cotton CD band (gCD) from the THF solution was gCD = +3.2 × 10-3 at 392 nm; conversely, from the DCM, the CD sign inverted to gCD = -0.8 × 10-3 at 371 nm. The sign and magnitude of the gCD values were interpreted to a London dispersion term (δd) of Hansen solubility parameter (δ) of the casting solvents rather than a dipole-dipole interaction term (δp) and a hydrogen bonding interaction term (δh) of the δ values and dielectric constant (ε). Analysis of solvent-driven changes in FTIR spectra, wide-angle X-ray diffraction profiles, and differential scanning calorimetry diagrams indicated that solvent driven on-off switching of multiple hydrogen bonds due to three urethane groups of CTPC play the key for the inversion. Intermolecular CH/π and π-π interactions among phenyl rings and alkyl groups were assumed to be crucial for helicity/chirality transfer capability based on molecular mechanics and molecular dynamics simulations of PF6-CTPC hybrids. These chiroptical inversion characteristics arose from solvent-driven order-disorder transition characteristics of the CTPC helix rather than a helix-helix transition of CTPC itself.


Asunto(s)
Celulosa/química , Fluorenos/química , Luminiscencia , Fenilcarbamatos/química , Dicroismo Circular , Isomerismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-36673685

RESUMEN

Biochar addition has been recommended as a potential strategy for mitigating climate change. However, the number of studies simultaneously investigating the effects of biochar addition on CO2, N2O and CH4 emissions and sequentially global warming potential (GWP) is limited, especially concerning its effect on native soil organic carbon (SOC) mineralization. An incubation experiment was conducted to investigate soil physicochemical properties, CO2, N2O and CH4 emissions and GWP in the treatments with 0% (CK), 1% (BC1) and 4% (BC4) cornstalk biochar additions, and clarify the priming effect of biochar on native SOC mineralization by the 13C tracer technique. Generally, biochar addition increased soil pH, cation exchange capacity, SOC and total nitrogen, but decreased NH4+-N and NO3--N. Compared with CK, BC1 and BC4 significantly reduced CO2 emissions by 20.7% and 28.0%, and reduced N2O emissions by 25.6% and 95.4%, respectively. However, BC1 significantly reduced CH4 emission by 43.6%, and BC4 increased CH4 emission by 19.3%. BC1 and BC4 significantly reduced the GWP by 20.8% and 29.3%, but there was no significant difference between them. Biochar addition had a negative priming effect on native SOC mineralization, which was the reason for the CO2 emission reduction. The negative priming effect of biochar was attributed to the physical protection of native SOC by promoting microaggregate formation and preferentially using soluble organic carbon in biochar. The N2O emission decrease was rooted in the reduction of nitrification and denitrification substrates by promoting the microbial assimilation of inorganic nitrogen. The inconsistency of CH4 emissions was attributed to the different relative contributions of CH4 production and oxidation under different biochar addition ratios. Our study suggests that 1% should be a more reasonable biochar addition ratio for mitigating greenhouse gas emissions in sandy loam, and emphasizes that it is necessary to furtherly investigate nitrogen primary transformation rates and the relative contributions of CH4 production and oxidation by the 15N and 13C technique, which is helpful for comprehensively understanding the effect mechanisms of biochar addition on greenhouse gas emissions.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Suelo/química , Carbono , Dióxido de Carbono/análisis , Óxido Nitroso/análisis , Carbón Orgánico/química , Nitrógeno/análisis , Agricultura
3.
Huan Jing Ke Xue ; 44(8): 4742-4750, 2023 Aug 08.
Artículo en Zh | MEDLINE | ID: mdl-37694666

RESUMEN

Increasing concentrations of greenhouse gases in the atmosphere caused by human activities are the main cause of climate warming. Global warming is a severe challenge confronted by human society today. Reducing greenhouse gas emissions and increasing carbon sinks are the keys to addressing climate warming. Biochar addition is considered to be a promising way to reduce greenhouse gas emissions and increase carbon sinks, due to its unique physical, chemical, and biological properties. Therefore, it is of great significance to study the effects of biochar on soil greenhouse gas emissions to mitigate the greenhouse effect and achieve "carbon neutrality." The long-term and short-term effects of biochar on soil greenhouse gas emissions and their influencing mechanism were reviewed. It was found that the effects of biochar on soil greenhouse gas emissions varied with the types of biochar feedstock, pyrolysis temperature, application ratio, and soil and vegetable types. In addition, due to the different aging times and modes and cultivation methods, the mitigation effect of aged biochar on soil greenhouse gas could be enhanced or weakened or even disappeared. Further, based on the deficiencies of the previous research, the direction and focus of future research on the effects of biochar on soil greenhouse gas emissions were analyzed and prospected. It was proposed to strengthen simultaneous research on the effects of biochar on CO2, N2O, and CH4 emissions; reducing greenhouse gas emissions and carbon sequestration; different aging modes and cultivation methods of biochar; and revealing the influencing mechanism at the process level, through exploring the effects of biochar on soil carbon and nitrogen dynamics and tracing the source of greenhouse gases using 13C and 15N tracer technology.

4.
Chem Commun (Camb) ; 51(39): 8237-40, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25820177

RESUMEN

2,2-Dimethyl-1,3-dioxolane connected to two pyrene moieties through flexible wires in chloroform exhibited cryptochirality in the ground state, as proven by the lack of detectable circular dichroism signals. This cryptochirality was deciphered in the photoexcited state by circularly polarised luminescence signals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA