RESUMEN
DNA inverted repeats (IRs) are widespread across many eukaryotic genomes. Their ability to form stable hairpin/cruciform secondary structures is causative in triggering chromosome instability leading to several human diseases. Distance and sequence divergence between IRs are inversely correlated with their ability to induce gross chromosomal rearrangements (GCRs) because of a lesser probability of secondary structure formation and chromosomal breakage. In this study, we demonstrate that structural parameters that normally constrain the instability of IRs are overcome when the repeats interact in single-stranded DNA (ssDNA). We established a system in budding yeast whereby >73 kb of ssDNA can be formed in cdc13-707fs mutants. We found that in ssDNA, 12 bp or 30 kb spaced Alu-IRs show similarly high levels of GCRs, while heterology only beyond 25% suppresses IR-induced instability. Mechanistically, rearrangements arise after cis-interaction of IRs leading to a DNA fold-back and the formation of a dicentric chromosome, which requires Rad52/Rad59 for IR annealing as well as Rad1-Rad10, Slx4, Msh2/Msh3 and Saw1 proteins for nonhomologous tail removal. Importantly, using structural characteristics rendering IRs permissive to DNA fold-back in yeast, we found that ssDNA regions mapped in cancer genomes contain a substantial number of potentially interacting and unstable IRs.
Asunto(s)
ADN de Cadena Simple , Humanos , Aberraciones Cromosómicas , ADN/metabolismo , Reparación del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismoRESUMEN
INTRODUCTION: Endovascular aneurysm repair using iodinated contrast agents risks contrast-induced nephropathy, especially in high-risk patients. This technical note describes a contrast-free endovascular aneurysm repair (EVAR) protocol using preoperative imaging measurement and fibrin sealant (FS) filling. TECHNIQUE: Preoperative imaging measurement and intraoperative guidewire manipulation facilitated anatomical identification without contrast. After endograft deployment, the aneurysm sac was filled with FS if endoleak was indicated by pressure fluctuations. RESULT: Between 2017 and 2020, 6 high-risk patients underwent contrast-free EVAR with FS filling. Complete exclusion was achieved in all cases. Over follow-up, no endoleaks, deterioration in renal function, or other complications were observed. CONCLUSION: Contrast-free EVAR with FS filling shows early feasibility as an alternative technique for contrast-induced nephropathy (CIN) high-risk patients, while larger studies with long-term monitoring are imperative to validate outcomes. CLINICAL IMPACT: This study showcases a contrast-free EVAR technique with fibrin sealant filling for high-risk CIN patients. It offers a safer approach for those with renal challenges, reducing CIN risk. The technique's feasibility in a small cohort suggests its utility in treating AAA without iodinated contrast, crucial for patients with specific health risks. For clinicians, it introduces a method that decreases nephrotoxic risks, potentially changing practice for vulnerable patients.
RESUMEN
OBJECTIVES: To assess the practicability and safety of a novel endovascular robotic system for performing endovascular aortic repair in human. METHODS: A prospective observational study was conducted in 2021 with 6 months post-operative follow-up. Patients with aortic aneurysms and clinical indications for elective endovascular aortic repair were enrolled in the study. The novel developed robotic system is applicable for the majority of commercial devices and various types of endovascular surgeries. The primary endpoint was technical success without in-hospital major adverse events. Technical success was defined as the ability of the robotic system to complete all procedural steps based on procedural segments. RESULTS: The first-in-human evaluation of robot-assisted endovascular aortic repair was performed in five patients. The primary endpoint was achieved in all patients (100%). There were no device- or procedure-related complications or no in-hospital major adverse events. The operation time and total blood loss in these cases were equal to those in the manual procedures. The radiation exposure of the surgeon was 96.5% lower than that in the traditional position while the radiation exposure of the patients was not significantly increased. CONCLUSIONS: Early clinical evaluation of the novel endovascular aortic repair in endovascular aortic repair demonstrated practicability, safety, and procedural effectiveness comparable to manual operation. In addition, the total radiation exposure of the operator was significantly lower than that of traditional procedures. CLINICAL RELEVANCE STATEMENT: This study applies a novel approach to perform the endovascular aortic repair in a more accurate and minimal-invasive way and lays the foundation for the perspective automation of the endovascular robotic system, which reflects a new paradigm for endovascular surgery. KEY POINTS: ⢠This study is a first-in-human evaluation of a novel endovascular robotic system for endovascular aortic repair (EVAR). ⢠Our system might reduce the occupational risks associated with manual EVAR and contribute to achieving a higher degree of precision and control. ⢠Early evaluation of the endovascular robotic system demonstrated practicability, safety, and procedural effectiveness comparable to that of manual operation.
Asunto(s)
Aneurisma de la Aorta Abdominal , Implantación de Prótesis Vascular , Procedimientos Endovasculares , Procedimientos Quirúrgicos Robotizados , Humanos , Reparación Endovascular de Aneurismas , Aneurisma de la Aorta Abdominal/cirugía , Procedimientos Endovasculares/métodos , Estudios Prospectivos , Resultado del Tratamiento , Implantación de Prótesis Vascular/métodos , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos , Factores de RiesgoRESUMEN
BACKGROUND: To assess the feasibility and first-in-human experience of a novel endovascular robotic system for treatment of lower extremity peripheral arterial disease (PAD). METHODS: Between November 2021 and January 2022, consecutive patients with obstructive lower extremity PAD and claudication (Rutherford 2-5) with >50% stenosis demonstrated on angiography were enrolled in this study. Lower extremity peripheral arterial intervention was performed using the endovascular robotic system, which consisted of a bedside unit and an interventional console. The primary endpoints were technical success, defined as the successful manipulation of the lower extremity peripheral arterial devices using the robotic system, and safety. The secondary endpoints were clinical success, defined as 50% residual stenosis at the completion of the robot-assisted procedure without major adverse cardiac events and radiation exposure. RESULTS: In total, 5 patients with PAD were enrolled in this study (69.2±6.0 years; 80% men). The novel endovascular robotic system successfully completed the entire procedure of endovascular treatment of lower extremity PAD. Conversion to manual operation, including advancement, retracement, rotation of the guidewires, catheters, sheaths, deployment, and release of the balloons and stent grafts, was not necessary. We achieved the criteria for clinical procedural and technical success in all patients. No deaths, myocardial infarctions, or ruptures occurred in the period up to 30 days after the procedure, and no device-related complications were observed. The robotic system operator had 97.6% less radiation exposure than that at the procedure table, with a mean of 1.40±0.49 µGy. CONCLUSIONS: This study demonstrated the safety and feasibility of the robotic system. The procedure reached technical and clinical performance metrics and resulted in significantly lower radiation exposure to the operators at the console compared with that at the procedure table. CLINICAL IMPACT: There were some reports about several robotic systems used in the peripheral arterial disease, but no robotic system was able to perform entire procedure of endovascular treatment of lower extremity peripheral arterial disease (PAD).To solve this problem, we designed a remote-control novel endovascular robotic system. It was the first robotic system that can perform entire procedure of endovascular treatment of PAD worldwide. A novelty retrieval report about this is provided in the supplementary materials.The robotic system is compatible with all commercial endovascular surgical devices currently available in the market, including guidewires, catheters and stent delivery systems. It can perform all types of motion, such as forward, backward, and rotation to meet the requirements of all types of endovascular procedures. During the operation, the robotic system can perform these operations in a fine-tuned manner, so it is easy to cross the lesions, which is the key factor influencing the success rate of the operation. In addition, the robotic system can effectively reduce the exposure time to radiation, thereby reducing the risk of occupational injury.
RESUMEN
The study examined the epidemiological characteristics of carbapenem-resistant Enterobacteriaceae (CRE) isolated from migratory birds and surroundings in Qinghai Lake, China. We identified 69 (15.7%) CRE isolates from a total of 439 samples including 29 (6.6%) blaNDM-5 Escherichia coli and 40 (9.1%) blaKPC-2 Klebsiella pneumoniae. WGS analysis indicated that ST746, ST48, ST1011, and ST167 were the primary sequence types (ST) for blaNDM-5 E. coli, while all blaKPC-2 K. pneumoniae were ST11 and harbored numerous antibiotic resistance gene types including blaCTX-M, qnrS, and rmtB. A phylogenetic tree based on core genomes revealed that blaNDM-5 E. coli was highly heterogeneous while the blaKPC-2 K. pneumoniae was highly genetically similar within the group and to human Chinese isolates. IncX3, IncHI2, and IncFIB-HI2 plasmid replicon types were associated with blaNDM-5 spread, while IncFII-R and IncFII plasmids mediated blaKPC-2 spread. We also identified IncFII-R hybrid plasmids most likely formed by IS26-mediated integration of IncFII into IncR plasmid backbones. This also facilitated the persistence of IncFII-R plasmids and antibiotic resistance genes including blaKPC-2. In addition, all of the blaKPC-2 K. pneumoniae isolates harbored a pLVKP-like virulence plasmid carrying a combination of two or more hypervirulence markers that included peg-344, iroB, iucA, rmpA, and rmpA2. This is the first description of ST11 K. pneumoniae that co-carried blaKPC-2- and pLVKP-like virulence plasmids from migratory birds. The blaKPC-2 K. pneumoniae carried by migratory birds displayed high genetic relatedness to human isolates highlighting a high risk of transmission of these K. pneumoniae. KEY POINTS: ⢠Multidrug resistance plasmids (blaKPC-2, bla436NDM-5, bla CTX-M, qnrS, and rmtB). ⢠Co-occurrence of plasmid-mediated resistance and virulence genes. ⢠High similarity between migratory bird genomes and humans.
Asunto(s)
Enterobacteriaceae , Infecciones por Klebsiella , Humanos , Enterobacteriaceae/genética , Escherichia coli/genética , beta-Lactamasas/genética , Filogenia , Lagos , Klebsiella pneumoniae/genética , Plásmidos/genética , Antibacterianos/farmacología , Genómica , China , Infecciones por Klebsiella/veterinariaRESUMEN
Palindromic sequences are a potent source of chromosomal instability in many organisms and are implicated in the pathogenesis of human diseases. In this study, we investigate which nucleases are responsible for cleavage of the hairpin and cruciform structures and generation of double-strand breaks at inverted repeats in Saccharomyces cerevisiae. We demonstrate that the involvement of structure-specific nucleases in palindrome fragility depends on the distance between inverted repeats and their transcriptional status. The attack by the Mre11 complex is constrained to hairpins with loops <9 nucleotides. This restriction is alleviated upon RPA depletion, indicating that RPA controls the stability and/or formation of secondary structures otherwise responsible for replication fork stalling and DSB formation. Mus81-Mms4 cleavage of cruciforms occurs at divergently but not convergently transcribed or nontranscribed repeats. Our study also reveals the third pathway for fragility at perfect and quasi-palindromes, which involves cruciform resolution during the G2 phase of the cell cycle.
Asunto(s)
Roturas del ADN de Doble Cadena , Replicación del ADN , ADN de Hongos/metabolismo , Secuencias Invertidas Repetidas , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Conformación de Ácido Nucleico , Elementos Estructurales de las Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
OBJECTIVES: To reconstruct the genomic epidemiology and evolution of MDR Salmonella Indiana in China. METHODS: A total of 108 Salmonella Indiana strains were collected from humans and livestock in China. All isolates were subjected to WGS and antimicrobial susceptibility testing. Phylogenetic relationships and evolutionary analyses were conducted using WGS data from this study and the NCBI database. RESULTS: Almost all 108 Salmonella Indiana strains displayed the MDR phenotype. Importantly, 84 isolates possessed concurrent resistance to ciprofloxacin and cefotaxime. WGS analysis revealed that class 1 integrons on the chromosome and IncHI2 plasmids were the key vectors responsible for multiple antibiotic resistance gene (ARG) [including ESBL and plasmid-mediated quinolone resistance (PMQR) genes] transmission among Salmonella Indiana. The 108 Salmonella Indiana dataset displayed a relatively large core genome and ST17 was the predominant ST. Moreover, the global ST17 Salmonella Indiana strains could be divided into five distinct lineages, each of which was significantly associated with a geographical distribution. Genomic analysis revealed multiple antimicrobial resistance determinants and QRDR mutations in Chinese lineages, which almost did not occur in other global lineages. Using molecular clock analysis, we hypothesized that ST17 isolates have existed since 1956 and underwent a major population expansion from the 1980s to the 2000s and the genetic diversity started to decrease around 2011, probably due to geographical barriers, antimicrobial selective pressure and MDR, favouring the establishment of this prevalent multiple antibiotic-resistant lineage and local epidemics. CONCLUSIONS: This study revealed that adaptation to antimicrobial pressure was possibly pivotal in the recent evolutionary trajectory for the clonal spread of ST17 Salmonella Indiana in China.
Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Salmonella enterica , Humanos , Filogenia , Farmacorresistencia Bacteriana Múltiple/genética , Salmonella enterica/genética , Pruebas de Sensibilidad Microbiana , Salmonella , Antibacterianos/farmacología , China/epidemiologíaRESUMEN
OBJECTIVES: This study evaluated the feasibility and safety of zone 1 thoracic endovascular aortic repair (TEVAR) with fenestrated surgeon-modified stent-graft (SMSG) for aortic arch pathologies. METHODS: Between March 2016 and November 2020, 34 consecutive patients underwent zone 1 TEVAR with fenestrated SMSG for aortic arch pathologies. Outcomes included technical success, perioperative, and follow-up morbidity and mortality. RESULTS: During the study period, 34 patients were treated with zone 1 TEVAR with fenestrated SMSG. Twenty-four (70.6%) patients presented with type B aortic dissections, 9 (26.5%) patients presented with aneurysms (7 located on the lesser curvature side of aortic arch), 1 (2.9%) patient presented with type Ia endoleak after previous TEVAR owing to traumatic aortic dissection. The proximal landing zone for all patients were in zone 1, and all supra-aortic trunks were reconstructed, except for one left subclavian artery. Technical success was achieved in all cases. The 30-day estimated survival (±SE) was 90.9% ± 5.0% [95% confidence interval (CI): 77.0%-97.0%]. The 30-day estimated freedom from reintervention (±SE) was 87.9% ± 5.7% (95% CI: 73.4%-95.3%). At a median follow-up of 48 months (range, 12-68 months), 2 patients died, including 1 aortic-related death and 1 non-aortic-related death. One patient had reintervention 13 months after the operation owing to type Ia endoleak. All supra-aortic trunks were patent. The estimated survival (±SE) during follow-up was 85.1% ± 6.2% (95% CI: 69.9%-93.6%). One (2.7%) patient had stroke. The estimated freedom from reintervention (±SE) during follow-up was 84.2% ± 6.5% (95% CI: 69.9%-93.5%). CONCLUSIONS: Zone 1 TEVAR with fenestrated SMSG is an alternate option for treatment of aortic arch pathologies in experienced centers.
RESUMEN
DNA double-stranded breaks (DSBs) trigger human genome instability, therefore identifying what factors contribute to DSB induction is critical for our understanding of human disease etiology. Using an unbiased, genome-wide approach, we found that genomic regions with the ability to form highly stable DNA secondary structures are enriched for endogenous DSBs in human cells. Human genomic regions predicted to form non-B-form DNA induced gross chromosomal rearrangements in yeast and displayed high indel frequency in human genomes. The extent of instability in both analyses is in concordance with the structure forming ability of these regions. We also observed an enrichment of DNA secondary structure-prone sites overlapping transcription start sites (TSSs) and CCCTC-binding factor (CTCF) binding sites, and uncovered an increase in DSBs at highly stable DNA secondary structure regions, in response to etoposide, an inhibitor of topoisomerase II (TOP2) re-ligation activity. Importantly, we found that TOP2 deficiency in both yeast and human leads to a significant reduction in DSBs at structure-prone loci, and that sites of TOP2 cleavage have a greater ability to form highly stable DNA secondary structures. This study reveals a direct role for TOP2 in generating secondary structure-mediated DNA fragility, advancing our understanding of mechanisms underlying human genome instability.
Asunto(s)
Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/ultraestructura , Conformación de Ácido Nucleico/efectos de los fármacos , Sitios de Unión/genética , Factor de Unión a CCCTC/genética , ADN/genética , ADN/ultraestructura , Reparación del ADN/genética , ADN-Topoisomerasas de Tipo II/genética , Etopósido/farmacología , Genoma Humano/genética , Inestabilidad Genómica/genética , Humanos , Sitio de Iniciación de la Transcripción/efectos de los fármacosRESUMEN
Combining chemotherapy with immunotherapy improves the therapeutic outcome for first-line (1L) patients with advance nonsmall-cell lung cancer (NSCLC). Two cohorts of a phase 1b study (NCT02937116) aimed to evaluate the safety and efficacy of sintilimab, a PD-1 inhibitor, plus chemotherapy in 1L patients with nonsquamous and squamous NSCLC (nsqNSCLC/sqNSCLC); and to identify potential biomarkers for treatment response. Treatment-naïve patients with nsqNSCLC were enrolled and intravenously given sintilimab (200 mg), pemetrexed (500 mg/m2), and cisplatin (75 mg/m2), every 3 weeks (Q3W) for 4 cycles in cohort D. Treatment-naïve patients with sqNSCLC were enrolled and intravenously given sintilimab (200 mg), gemcitabine (1250 mg/m2), and cisplatin (75 mg/m2), Q3W, for 6 cycles in cohort E. The primary objective was to evaluate the safety and efficacy of the treatment. The additional objective was to explore biomarkers for the treatment efficacy. Twenty-one patients with nsqNSCLC, and 20 patients with sqNSCLC were enrolled in cohort D and cohort E, respectively. By the data cutoff (April 17, 2019), 8 (38.1%) patients in cohort D and 17 (85.0%) patients in cohort E experienced grade 3-4 adverse events. The median follow-up duration was 16.4 months (14.8-23.0) in cohort D and 15.9 months (11.7-17.7) in cohort E. The objective response rate was 68.4% (95% CI 43.4%, 87.4%) in cohort D and 64.7% (95% CI 38.3%, 85.8%) in cohort E. Neither PD-L1 expression nor tumor mutation burden value was significantly associated with an improved treatment response. Sintilimab plus chemotherapy exhibited manageable toxicity and an encouraging antitumor activity in patients with nsqNSCLC and sqNSCLC.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Anticuerpos Monoclonales Humanizados/administración & dosificación , Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Antígeno B7-H1/antagonistas & inhibidores , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/etiología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Estimación de Kaplan-Meier , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/mortalidad , Masculino , Mutación , Metástasis de la Neoplasia , Estadificación de Neoplasias , Resultado del TratamientoRESUMEN
We investigated the prevalence and transmission of NDM-producing Enterobacteriaceae in fecal samples of geese and environmental samples from a goose farm in southern China. The samples were cultivated on MacConkey agar plates supplemented with meropenem. Individual colonies were examined for blaNDM, and blaNDM-positive bacteria were characterized based on whole-genome sequencing (WGS) data from the Illumina and Oxford Nanopore Technologies (ONT) platforms. Of 117 samples analyzed, the carriage rates for New Delhi metallo-ß-lactamase (NDM)-positive Enterobacteriaceae were 47.1, 18, and 50% in geese, inanimate environments (sewage, soil, fodder, and dust), and mouse samples, respectively. Two variants (blaNDM-1 and blaNDM-5, in 4 and 40 isolates, respectively) were found among 44 blaNDM-positive Enterobacteriaceae; these variants belonged to eight species, and Escherichia coli was the most prevalent (50%). WGS analysis revealed that blaNDM coexisted with diverse antibiotic resistance genes (ARGs). Population structure analysis showed that most E. coli and Enterobacter sp. isolates were highly heterogeneous, while most Citrobacter sp. and P. stuartii isolates possessed extremely high genetic similarities. In addition, blaNDM-5-positive ST4358/ST48 E. coli isolates were found to be clonally spread between geese and the environment and were highly genetically similar to those reported from ducks, farm environments, and humans in China. Plasmid analysis indicated that IncX3 pHNYX644-1-like (n = 40) and untypeable pM2-1-like plasmids (n = 4) mediated blaNDM spread. pM2-1-like plasmids possessed diverse ARGs, including blaNDM-1, the arsenical and mercury resistance operons, and the maltose operon. Our findings revealed that the goose farm is a reservoir for NDM-positive Enterobacteriaceae The blaNDM contamination of wild mice and the novel pM2-1-like plasmid described here likely adds to the risk for dissemination of blaNDM and associated resistance genes.IMPORTANCE Carbapenem-resistant bacteria, in particular NDM-producing Enterobacteriaceae, have become a great threat to global public. These bacteria have been found not only in hospital and community environments but also among food animal production chains, which are recognized as reservoirs for NDM-producing Enterobacteriaceae However, the dissemination of NDM-producing bacteria in waterfowl farms has been less well explored. Our study demonstrates that the horizontal spread of blaNDM-carrying plasmids and the partial clonal spread of blaNDM-positive Enterobacteriaceae contribute to the widespread contamination of blaNDM in the goose farm ecosystem, including mice. Furthermore, we found a novel and transferable blaNDM-1-carrying multidrug resistance (MDR) plasmid that possessed multiple environmental adaptation-related genes. The outcomes of this study contribute to a better understanding of the prevalence and transmission of blaNDM-carrying Enterobacteriaceae among diverse niches in the farm ecosystem.
Asunto(s)
Infecciones por Enterobacteriaceae/microbiología , Enterobacteriaceae/aislamiento & purificación , Gansos/microbiología , Enfermedades de las Aves de Corral/microbiología , beta-Lactamasas/genética , Animales , Antibacterianos/farmacología , China , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/veterinaria , Granjas , Heces/microbiología , Fómites/microbiología , Ratones , Pruebas de Sensibilidad MicrobianaRESUMEN
We identified fosA3 at a rate of 2.6% in 310 Salmonella isolates from food animals in Guangdong province, China. The fosA3 gene was genetically linked to diverse antibiotic resistance genes (ARGs), including mcr-1, blaCTX-M-14/55, oqxAB, and rmtB These gene combinations were embedded in heterogeneous fosA3-containing multidrug resistance regions on the transferable ST3-IncHI2 and F33:A-:B- plasmids and the chromosome. This indicated a great flexibility of fosA3 cotransmission with multiple important ARGs among Salmonella species.
Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Fosfomicina/farmacología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Plásmidos/genética , Infecciones por Salmonella/epidemiología , Salmonella typhimurium/efectos de los fármacosRESUMEN
Tigecycline serves as one of the antibiotics of last resort to treat multidrug-resistant (including carbapenem-resistant) pathogens. However, the recently emerged plasmid-mediated tigecycline resistance mechanism, Tet(X), challenges the clinical efficacy of this class of antibiotics. In this study, we detected 180 tet(X)-harboring Acinetobacter isolates (8.9%, n = 180) from 2,018 samples collected from avian farms and adjacent environments in China. Eighteen tet(X)-harboring isolates (10.0%) were found to cocarry the carbapenemase gene blaNDM-1, mostly from waterfowl samples (94.4%, 17/18). Interestingly, among six Acinetobacter strains, tet(X) and blaNDM-1 were found to colocalize on the same plasmids. Moreover, whole-genome sequencing (WGS) revealed a novel orthologue of tet(X) in the six isolates coharboring tet(X) and blaNDM-1 Inverse PCR suggested that the two tet(X) genes form a single transposable unit and may be cotransferred. Sequence comparison between six tet(X)- and blaNDM-1-coharboring plasmids showed that they shared a highly homologous plasmid backbone even though they were isolated from different Acinetobacter species (three from Acinetobacter indicus, two from Acinetobacter schindleri, and one from Acinetobacter lwoffii) from various sources and from different geological regions, suggesting the horizontal genetic transfer of a common tet(X)- and blaNDM-1-coharboring plasmid among Acinetobacter species in China. Emergence and spread of such plasmids and strains are of great clinical concern, and measures must be implemented to avoid their dissemination.
Asunto(s)
Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/veterinaria , Acinetobacter/efectos de los fármacos , Antibacterianos/farmacología , Enfermedades de las Aves/microbiología , Aves/microbiología , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana/genética , Resistencia a la Tetraciclina/genética , Tigeciclina/farmacología , Infecciones por Acinetobacter/epidemiología , Animales , Enfermedades de las Aves/epidemiología , China , Transferencia de Gen Horizontal , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , Plásmidos , Secuenciación Completa del GenomaRESUMEN
OBJECTIVES: To investigate the prevalence and transmission of mcr-3 among Salmonella enterica serotype Typhimurium and 1,4,[5],12:i:-. METHODS: A total of 4724 clinical Salmonella isolates were screened for the presence of mcr-3 in China during 2014-19. The clonal relationship of the mcr-3-positive isolates and their plasmid contents and complete sequence were also characterized based on WGS data from the Illumina and MinION platforms. RESULTS: We identified 10 mcr-3-positive isolates, and all were MDR, mostly resistant to colistin, cefotaxime, ciprofloxacin, doxycycline and florfenicol. mcr-3 was co-present with blaCTX-M-55-qnrS1 on hybrid ST3-IncC-FII conjugatable plasmids (n = 6) and an ST3-IncC non-conjugatable plasmid (n = 1) and embedded into a pCHL5009T-like IncFII plasmid on the Salmonella chromosome (n = 3). Four distinctive genetic contexts surrounded mcr-3 and all but one were closely related to each other and to the corresponding region of IncFII plasmid pCHL5009T. IS15DI was most likely the vehicle for integration of mcr-3-carrying IncFII plasmids into ST3-IncC plasmids and the chromosome and for shaping the MDR regions. In addition, a phylogenetic tree based on the core genome revealed a unique Salmonella lineage (≤665 SNPs) that contained these 10 mcr-3-positive isolates and another 38 (33 from patients) mcr-3-positive Salmonella from five countries. In particular, most of the 51 mcr-3-positive isolates belonged to ST34 and harboured diverse antibiotic resistance genes (ARGs), including mcr-3-blaCTX-M-55-qnrS1, and possessed similar ARG profiles. CONCLUSIONS: Our findings revealed global clonal spread of MDR ST34 Salmonella from clinical isolates co-harbouring mcr-3 with blaCTX-M-55 and qnrS1 and a flexibility of mcr-3 co-transmittance with other ARGs mediated by mobile genetic elements.
Asunto(s)
Antibacterianos , Salmonella typhimurium , Antibacterianos/farmacología , China/epidemiología , Humanos , Pruebas de Sensibilidad Microbiana , Filogenia , Plásmidos/genética , Salmonella typhimurium/genética , SerogrupoRESUMEN
BACKGROUND: Liriodendron chinense ranges widely in subtropical China and northern Vietnam; however, it inhabits several small, isolated populations and is now an endangered species due to its limited seed production. The objective of this study was to develop a set of nuclear SSR (simple sequence repeats) and multiple chloroplast genome markers for genetic studies in L. chinense and their characterization in diverse germplasm. RESULTS: We performed low-coverage whole genome sequencing of the L. chinense from four genotypes, assembled the chloroplast genome and identified nuclear SSR loci by searching in contigs for SSR motifs. Comparative analysis of the four chloroplast genomes of L. chinense revealed 45 SNPs, 17 indels, 49 polymorphic SSR loci, and five small inversions. Most chloroplast intraspecific polymorphisms were located in the interspaces of single-copy regions. In total, 6147 SSR markers were isolated from low-coverage whole genome sequences. The most common SSR motifs were dinucleotide (70.09%), followed by trinucleotide motifs (23.10%). The motif AG/TC (33.51%) was the most abundant, followed by TC/AG (25.53%). A set of 13 SSR primer combinations were tested for amplification and their ability to detect polymorphisms in a set of 109 L. chinense individuals, representing distinct varieties or germplasm. The number of alleles per locus ranged from 8 to 28 with an average of 21 alleles. The expected heterozygosity (He) varied from 0.19 to 0.93 and the observed heterozygosity (Ho) ranged from 0.11 to 0.79. CONCLUSIONS: The genetic resources characterized and tested in this study provide a valuable tool to detect polymorphisms in L. chinense for future genetic studies and breeding programs.
Asunto(s)
Genoma del Cloroplasto/genética , Genoma de Planta/genética , Liriodendron/genética , Polimorfismo Genético/genética , Alelos , Cartilla de ADN/genética , ADN de Plantas/genética , Genotipo , Repeticiones de Microsatélite , Secuenciación Completa del GenomaRESUMEN
The removal of antibiotics is crucial for improvement of water quality in animal wastewater treatment. In this paper, the performance of microbial fuel cell (MFC) in terms of degradation of typical antibiotics was investigated. Electricity was successfully produced by using sludge supernatant mixtures and synthesized animal wastewater as inoculation in MFC. Results demonstrated that the stable voltage, the maximum power density and internal resistance of anaerobic self-electrolysis (ASE) -112 and ASE-116 without antibiotics addition were 0.574â¯V, 5.78â¯Wâ¯m-3 and 28.06â¯Ω, and 0.565â¯V, 5.82â¯Wâ¯m-3 and 29.38â¯Ω, respectively. Moreover, when adding aureomycin, sulfadimidine, roxithromycin and norfloxacin into the reactors, the performance of MFC was inhibited (0.51â¯V-0.41â¯V), while the output voltage was improved with the decreased concentration of antibiotics. However, the removal efficiency of ammonia nitrogen (NH3-N) and total phosphorus (TP) were both obviously enhanced. Simultaneously, LC-MS analysis showed that the removal efficiency of aureomycin, roxithromycin and norfloxacin were all 100% and the removal efficiency of sulfadimidine also reached 99.9%. These results indicated that antibiotics displayed significantly inhibitions for electricity performance but improved the quality of water simultaneously.
Asunto(s)
Antibacterianos , Fuentes de Energía Bioeléctrica , Electricidad , Aguas del Alcantarillado , Aguas ResidualesRESUMEN
Vasoactive intestinal peptide (VIP) is a neurotransmitter that primarily functions as a vasodilator. VIP plays its role through binding to its receptors known as VIP/pituitary adenylate cyclase-activating peptide receptors (VPACs). In this study, we examined the expression of VPAC1 in human colon cancer tissues, analyzed the relationship between VPAC1 expression and cancer malignancy, and explored the possible mechanisms using immunohistochemistry and immunofluorescence double staining. The results showed that (1) poorly differentiated colon cancers have significantly higher VPAC1 expression than well-differentiated colon cancers do (p < 0.01); (2) phospho-epithelial growth factor receptor (EGFR) overexpression/activation in the cytoplasm of cancer cells is related to VPAC1 overexpression; (3) blood vessels surrounding colon cancer have significantly more VPAC1-positive than normal colon mucosa does; (4) tumor-associated macrophages (TAMs) of colon cancer have a higher level of VPAC1 expression than macrophages in normal colon mucosa do. These data suggest that VPAC1 overexpression is associated with poorer differentiation of colon cancer, which is likely caused by subsequent EGFR activation in cancer cells. In addition, VPAC1 overexpression in both blood vessels and macrophages in tumors may also play an important role in the development of aggressive cancer.
Asunto(s)
Diferenciación Celular/genética , Neoplasias del Colon/genética , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/genética , Adulto , Neoplasias del Colon/patología , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Humanos , ARN Mensajero/biosíntesis , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/biosíntesis , Péptido Intestinal Vasoactivo/genéticaRESUMEN
We developed a localized surface plasmon resonance (LSPR)-based label-free optical biosensor for detection of salbutamol (Sal). Hollow gold nanoparticles (HGNs) which deposited on transparent indium tin oxide (ITO) film coated glass was used to sensing platform. Antibody against Sal was immobilized on HGN surface to recognize the target Sal molecules. Thus, the change of LSPR peak was proportional to the concentration of Sal in the solution. The experimental results demonstrated that the LSPR immunosensor possessed a good sensitivity and a high selectivity for Sal. The detection range for Sal was from 0.05 to 0.8 µg/mL with a correlation coefficient of 0.996. The biosensor was applied for the detection for Sal in spiked animal feed and pork liver samples, and the recoveries were in the range of 97-105 %. Therefore, it is expected that this approach may offer a new method in designing label-free LSPR immunosensor for detection of small molecules.
Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/análisis , Albuterol/análisis , Oro/química , Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie/métodos , Agonistas de Receptores Adrenérgicos beta 2/farmacocinética , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Albuterol/farmacocinética , Albuterol/farmacología , Animales , Hígado/metabolismo , Sensibilidad y Especificidad , PorcinosRESUMEN
The role of human cell division cycle 73 (CDC73) in human cancers has sparked controversy; however, its significance in oesophageal cancer remains elusive. This study aimed to elucidate CDC73 expression and its biological implications in human oesophageal cancer. Our findings unveiled a notable upregulation of CDC73 in both oesophageal cancer cell lines and tissues. Importantly, elevated CDC73 levels in patients with oesophageal cancer correlated with an unfavourable prognosis. Functional investigations revealed that CDC73 knockdown effectively curtailed the proliferation and growth of oesophageal cancer cells both in vitro and in vivo. Mechanistically, RRP15 emerged as a potential downstream target of CDC73 through a screening process involving identification of the top co-expressed genes, subsequent knockdown experiments, and observation of significant inhibition of cell proliferation, with RRP15 showing the most pronounced effect. This finding was further supported by the positive correlation observed between CDC73 and RRP15 in ESCA samples analysed using the ENCORI Pan-Cancer Analysis Platform. Notably, depletion of RRP15 in CDC73-overexpressing cells led to a shift from augmented to diminished tumour growth. Collectively, our findings underscore the pivotal role of CDC73 in oesophageal cancer through the modulation of RRP15 expression, suggesting CDC73 as a potential therapeutic target for treating oesophageal cancer.
RESUMEN
OBJECTIVE: Glucagon is a critical hormone regulating glucose metabolism. It stimulates the liver to release glucose under low blood sugar conditions, thereby maintaining blood glucose stability. Excessive glucagon secretion and hyperglycemia is observed in individuals with diabetes. Precise modulation of glucagon is significant to maintain glucose homeostasis. Piezo1 is a mechanosensitive ion channel capable of converting extracellular mechanical forces into intracellular signals, thus regulating hormonal synthesis and secretion. This study aims to investigate the role of Piezo1 in regulating glucagon production in α cells. METHODS: The effects of Piezo1 on glucagon production were examined in normal- or high-fat diet fed α cell-specific Piezo1 knockout mice (Gcg-Piezo1-/-), and the murine pancreatic α cell line αTC1-6. Expression of Proglucagon was investigated by real-time PCR and western blotting. Plasma glucagon and insulin were detected by enzyme immunoassay. RESULTS: Under both normal- and high-fat diet conditions, Gcg-Piezo1-/- mice exhibited increased pancreatic α cell proportion, hyperglucagonemia, impaired glucose tolerance, and activated pancreatic mTORC1 signaling. Activation of Piezo1 by its agonist Yoda1 or overexpression of Piezo1 led to decreased glucagon synthesis and suppressed mTOR signaling pathway in αTC1-6 cells. Additionally, the levels of glucagon in the medium were also reduced. Conversely, knockdown of Piezo1 produced opposite effects. CONCLUSION: Our study uncovers the regulatory role of the Piezo1 ion channel in α cells. Piezo1 influences glucagon production by affecting mTOR signaling pathway.