Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Comput Struct Biotechnol J ; 23: 316-329, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38192372

RESUMEN

Host-pathogen interactions (HPIs) are vital in numerous biological activities and are intrinsically linked to the onset and progression of infectious diseases. HPIs are pivotal in the entire lifecycle of diseases: from the onset of pathogen introduction, navigating through the mechanisms that bypass host cellular defenses, to its subsequent proliferation inside the host. At the heart of these stages lies the synergy of proteins from both the host and the pathogen. By understanding these interlinking protein dynamics, we can gain crucial insights into how diseases progress and pave the way for stronger plant defenses and the swift formulation of countermeasures. In the framework of current study, we developed a web-based R/Shiny app, Deep-HPI-pred, that uses network-driven feature learning method to predict the yet unmapped interactions between pathogen and host proteins. Leveraging citrus and CLas bacteria training datasets as case study, we spotlight the effectiveness of Deep-HPI-pred in discerning Protein-protein interaction (PPIs) between them. Deep-HPI-pred use Multilayer Perceptron (MLP) models for HPI prediction, which is based on a comprehensive evaluation of topological features and neural network architectures. When subjected to independent validation datasets, the predicted models consistently surpassed a Matthews correlation coefficient (MCC) of 0.80 in host-pathogen interactions. Remarkably, the use of Eigenvector Centrality as the leading topological feature further enhanced this performance. Further, Deep-HPI-pred also offers relevant gene ontology (GO) term information for each pathogen and host protein within the system. This protein annotation data contributes an additional layer to our understanding of the intricate dynamics within host-pathogen interactions. In the additional benchmarking studies, the Deep-HPI-pred model has proven its robustness by consistently delivering reliable results across different host-pathogen systems, including plant-pathogens (accuracy of 98.4% and 97.9%), human-virus (accuracy of 94.3%), and animal-bacteria (accuracy of 96.6%) interactomes. These results not only demonstrate the model's versatility but also pave the way for gaining comprehensive insights into the molecular underpinnings of complex host-pathogen interactions. Taken together, the Deep-HPI-pred applet offers a unified web service for both identifying and illustrating interaction networks. Deep-HPI-pred applet is freely accessible at its homepage: https://cbi.gxu.edu.cn/shiny-apps/Deep-HPI-pred/ and at github: https://github.com/tahirulqamar/Deep-HPI-pred.

3.
Plant Commun ; 5(2): 100766, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37974402

RESUMEN

Bananas (Musa spp.) are one of the world's most important fruit crops and play a vital role in food security for many developing countries. Most banana cultivars are triploids derived from inter- and intraspecific hybridizations between the wild diploid ancestor species Musa acuminate (AA) and M. balbisiana (BB). We report two haplotype-resolved genome assemblies of the representative AAB-cultivated types, Plantain and Silk, and precisely characterize ancestral contributions by examining ancestry mosaics across the genome. Widespread asymmetric evolution is observed in their subgenomes, which can be linked to frequent homologous exchange events. We reveal the genetic makeup of triploid banana cultivars and verify that subgenome B is a rich source of disease resistance genes. Only 58.5% and 59.4% of Plantain and Silk genes, respectively, are present in all three haplotypes, with >50% of genes being differentially expressed alleles in different subgenomes. We observed that the number of upregulated genes in Plantain is significantly higher than that in Silk at one-week post-inoculation with Fusarium wilt tropical race 4 (Foc TR4), which confirms that Plantain can initiate defense responses faster than Silk. Additionally, we compared genomic and transcriptomic differences among the genes related to carotenoid synthesis and starch metabolism between Plantain and Silk. Our study provides resources for better understanding the genomic architecture of cultivated bananas and has important implications for Musa genetics and breeding.


Asunto(s)
Fusarium , Musa , Musa/genética , Fusarium/genética , Haplotipos , Perfilación de la Expresión Génica , Transcriptoma
4.
Mol Plant ; 14(10): 1757-1767, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34171480

RESUMEN

Rice (Oryza sativa), a major staple throughout the world and a model system for plant genomics and breeding, was the first crop genome sequenced almost two decades ago. However, reference genomes for all higher organisms to date contain gaps and missing sequences. Here, we report the assembly and analysis of gap-free reference genome sequences for two elite O. sativa xian/indica rice varieties, Zhenshan 97 and Minghui 63, which are being used as a model system for studying heterosis and yield. Gap-free reference genomes provide the opportunity for a global view of the structure and function of centromeres. We show that all rice centromeric regions share conserved centromere-specific satellite motifs with different copy numbers and structures. In addition, the similarity of CentO repeats in the same chromosome is higher than across chromosomes, supporting a model of local expansion and homogenization. Both genomes have over 395 non-TE genes located in centromere regions, of which ∼41% are actively transcribed. Two large structural variants at the end of chromosome 11 affect the copy number of resistance genes between the two genomes. The availability of the two gap-free genomes lays a solid foundation for further understanding genome structure and function in plants and breeding climate-resilient varieties.


Asunto(s)
Centrómero , Cromosomas de las Plantas , Genoma de Planta , Oryza/genética , Anotación de Secuencia Molecular , Especificidad de la Especie , Secuenciación Completa del Genoma
5.
Genome Biol ; 21(1): 99, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345342

RESUMEN

BACKGROUND: Influenza is a severe respiratory illness that continually threatens global health. It has been widely known that gut microbiota modulates the host response to protect against influenza infection, but mechanistic details remain largely unknown. Here, we took advantage of the phenomenon of lethal dose 50 (LD50) and metagenomic sequencing analysis to identify specific anti-influenza gut microbes and analyze the underlying mechanism. RESULTS: Transferring fecal microbes from mice that survive virulent influenza H7N9 infection into antibiotic-treated mice confers resistance to infection. Some gut microbes exhibit differential features to lethal influenza infection depending on the infection outcome. Bifidobacterium pseudolongum and Bifidobacterium animalis levels are significantly elevated in surviving mice when compared to dead or mock-infected mice. Oral administration of B. animalis alone or the combination of both significantly reduces the severity of H7N9 infection in both antibiotic-treated and germ-free mice. Functional metagenomic analysis suggests that B. animalis mediates the anti-influenza effect via several specific metabolic molecules. In vivo tests confirm valine and coenzyme A produce an anti-influenza effect. CONCLUSIONS: These findings show that the severity of influenza infection is closely related to the heterogeneous responses of the gut microbiota. We demonstrate the anti-influenza effect of B. animalis, and also find that the gut population of endogenous B. animalis can expand to enhance host influenza resistance when lethal influenza infection occurs, representing a novel interaction between host and gut microbiota. Further, our data suggest the potential utility of Bifidobacterium in the prevention and as a prognostic predictor of influenza.


Asunto(s)
Bifidobacterium animalis , Microbioma Gastrointestinal , Infecciones por Orthomyxoviridae/prevención & control , Animales , Bifidobacterium/aislamiento & purificación , Bifidobacterium animalis/aislamiento & purificación , Bifidobacterium animalis/fisiología , Coenzima A/uso terapéutico , Heces/microbiología , Subtipo H7N9 del Virus de la Influenza A , Dosificación Letal Mediana , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/microbiología , Infecciones por Orthomyxoviridae/patología , Valina/uso terapéutico
6.
Medicine (Baltimore) ; 98(18): e15352, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31045777

RESUMEN

BACKGROUND: Previous studies have investigated heavy metal exposure could increase the occurrence of congenital heart defects (CHDs). However, there are limited data regarding the relationship between exposure to nickel and CHDs occurrence in offspring. The aim of this study was to analyze the association between nickel exposure in mothers and the risk of CHDs in offspring. MATERIALS AND METHODS: To explore the association of nickel exposure and occurrence of CHD, a case-control study with 490 controls and 399 cases with CHDs in China were developed. The concentrations of nickel in hair of pregnant woman and fetal placental tissue were measured and used a logistic regression analysis to explore the relationship between nickel exposure and risk of CHD. RESULTS: The median concentrations of nickel were 0.629 ng/mg, P < .05 (adjusted odds ratio [aOR], 1.326; 95% CI, 1.003-1.757) and 0.178 ng/mg, P < .05 (aOR, 2.204; 95% CI, 0.783-6.206), in maternal hair and in fetal placental tissue in the CHD group, respectively. Significant differences in the level of nickel in hair were also found in the different CHD subtypes including septal defects (P < .05), conotruncal defects (P < .05), right ventricular outflow tract obstruction (P < .01), and left ventricular outflow tract obstruction (P < .05). Dramatically different nickel concentrations in fetal placenta tissue were found in cases with other heart defects (P < .05). CONCLUSIONS: The finding suggested that the occurrence of CHDs may be associated with nickel exposure.


Asunto(s)
Cardiopatías Congénitas/inducido químicamente , Exposición Materna/efectos adversos , Níquel/efectos adversos , Efectos Tardíos de la Exposición Prenatal/epidemiología , Adulto , Estudios de Casos y Controles , China/epidemiología , Femenino , Edad Gestacional , Cabello/química , Humanos , Oportunidad Relativa , Placenta/química , Embarazo , Análisis de Regresión , Factores de Riesgo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA