Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gene ; 585(1): 44-50, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26992639

RESUMEN

Transcription factor nuclear factor of activated T cells c4 (NFATc4) is the best-characterized target for the development of cardiac hypertrophy. Aberrant microRNA-29 (miR-29) expression is involved in the development of cardiac fibrosis and congestive heart failure. However, whether miR-29 regulates hypertrophic processes is still not clear. In this study, we investigated the potential functions of miR-29a-3p in endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy. We showed that miR-29a-3p was down-regulated in ET-1-treated H9c2 cardiomyocytes. Overexpression of miR-29a-3p significantly reduced ET-1-induced hypertrophic responses in H9c2 cardiomyocytes, which was accompanied by a decrease in NFATc4 expression. miR-29a-3p targeted directly to the 3'-UTR of NFATc4 mRNA and silenced NFATc4 expression. Our results indicate that miR-29a-3p inhibits ET-1-induced cardiomyocyte hypertrophy via inhibiting NFATc4 expression.


Asunto(s)
Cardiomegalia/genética , Endotelina-1/metabolismo , Insuficiencia Cardíaca/genética , MicroARNs/genética , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/genética , Proteínas del Tejido Nervioso/genética , Regiones no Traducidas 3'/genética , Animales , Línea Celular , Regulación hacia Abajo/genética , Fibrosis/genética , MicroARNs/biosíntesis , Factores de Transcripción NFATC/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , ARN Mensajero/genética , Ratas
2.
Stem Cells Int ; 2015: 534758, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25949242

RESUMEN

Mesenchymal stem cells (MSCs) are known to undergo endothelial differentiation in response to treatment with vascular endothelial growth factor (VEGF), but their angiogenic ability is poorly characterized. In the present study, we aimed to further investigate the role of Rho/MRTF-A in angiogenesis by MSCs and the effect of the Rho/MRTF-A pathway on the expression of integrins α1ß1 and α5ß1, which are known to mediate physiological and pathological angiogenesis. Our results showed that increased expression of α1, α5, and ß1 was observed during angiogenesis of differentiated MSCs, and the Rho/MRTF-A signaling pathway was demonstrated to be involved in regulating the expression of integrins α1, α5, and ß1. Luciferase reporter assay and ChIP assay determined that MRTF-A could bind to and transactivate the integrin α1 and α5 promoters. Treatment with the Rho inhibitor C3 transferase, the Rho-associated protein kinase (ROCK) inhibitor Y27632 or with shMRTF-A inhibited both the upregulation of α1, α5, and ß1 as well as angiogenesis. Furthermore, in human umbilical vein endothelial cells (HUVECs), MRTF-A deletion led to marked reductions in cell migration and vessel network formation compared with the control. These data demonstrate that Rho/MRTF-A signaling is an important mediator that controls integrin gene expression during MSC-mediated angiogenic processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA