Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Arch Pharm (Weinheim) ; 354(5): e2000349, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33351199

RESUMEN

Mycobacterium tuberculosis (Mtb) is one of the most dangerous pathogens affecting immunocompetent and immunocompromised patients worldwide. Novel molecules, which are efficient and can reduce the duration of therapy against drug-resistant strains, are an urgent unmet need of the hour. In our current study, a series of new 2-(3-phenyl-1H-pyrazol-1-yl)acetamide and N'-benzylidene-2-(3-phenyl-1H-pyrazol-1-yl)acetohydrazide derivatives were designed, synthesized, and evaluated for their antimycobacterial potential. The biological evaluation revealed that 6b, 6m, 6l, 7a, and 7k exhibited selective and potent inhibitory activity against Mtb. Furthermore, compounds 6m and 7h were found to be nontoxic to Vero cells with CC50 of greater than 20 and 80 mg/ml, respectively, and exhibited promising selectivity indices (SI) of greater than 666 and 320, respectively. All derivatives exhibited excellent ADME (absorption, distribution, metabolism, and excretion) properties in silico. Also, all the derivatives were found compliant with Lipinski's rule of five, showing their druggability profile. Molecular docking insights of these derivatives have shown outstanding binding energies on the mycobacterial membrane protein large transporters. These results indicate that this scaffold may lead to a potential antimycobacterial drug candidate in the discovery of antitubercular agents.


Asunto(s)
Acetamidas/farmacología , Antituberculosos/farmacología , Diseño de Fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Pirazoles/farmacología , Acetamidas/síntesis química , Acetamidas/química , Antituberculosos/síntesis química , Antituberculosos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad
2.
Langmuir ; 33(23): 5925-5931, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28514857

RESUMEN

Proteins are widely utilized as templates in biomimetic synthesis of gold nanocrystals. However, the role of proteins in mediating the pathways for gold nucleation and growth is not well understood, in part because of the lack of spatial resolution in probing the complicated biomimetic mineralization process. Self-assembled protein cages, with larger size and symmetry, can facilitate in the visualization of both biological and inorganic components. We have utilized bacteriophage P22 protein cages of ∼60 nm diameter for investigating the nucleation and growth of gold nanocrystals. By adding a gold precursor into the solution with preexisting protein cages and a reducing agent, gold nuclei/prenucleation clusters form in solution, which then locate and attach to specific binding sites on protein cages and further grow to form gold nanocrystals. By contrast, addition of the reducing agent into the solution with incubated gold precursor and protein cages leads to the formation of gold nuclei/prenucleation clusters both in solution and on the surface of protein cages that then grow into gold nanocrystals. Because of the presence of cysteine (Cys) with strong gold-binding affinity, gold nanocrystals tend to bind at specific sites of Cys, irrespective of the binding sites of gold ions. Analyzing the results obtained using these alternate routes provide important insights into the pathways of protein-mediated biomimetic nucleation of gold that challenge the importance of incubation, which is widely utilized in the biotemplated synthesis of inorganic nanocrystals.


Asunto(s)
Nanopartículas del Metal , Biomimética , Oro , Proteínas
3.
J Am Chem Soc ; 137(37): 11996-2005, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26340536

RESUMEN

Developing high-efficiency, durable, and low-cost catalysts based on earth-abundant elements for the oxygen evolution reaction (OER) is essential for renewable energy conversion and energy storage devices. In this study, we report a highly active nanostructured electrode, NanoCOT, which contains carbon, oxygen, and titanium, for efficient OER in alkaline solution. The NanoCOT electrode is synthesized from carbon transformation of TiO2 in an atmosphere of methane, hydrogen, and nitrogen at a high temperature. The NanoCOT exhibits enhanced OER catalytic activity in alkaline solution, providing a current density of 1.33 mA/cm(2) at an overpotential of 0.42 V. This OER current density of a NanoCOT electrode is about 4 times higher than an oxidized Ir electrode and 15 times higher than a Pt electrode because of its nanostructured high surface area and favorable OER kinetics. The enhanced catalytic activity of NanoCOT is attributed to the presence of a continuous energy band of the titanium oxide electrode with predominantly reduced defect states of Ti (e.g., Ti(1+), Ti(2+), and Ti(3+)) formed by chemical reduction with hydrogen and carbon. The OER performance of NanoCOT can also be further enhanced by decreasing its overpotential by 150 mV at a current density of 1.0 mA/cm(2) after coating its surface electrophoretically with 2.0 nm IrOx nanoparticles.

4.
Biomacromolecules ; 16(1): 214-8, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25494935

RESUMEN

Biological organisms have evolved tremendous control over the synthesis of inorganic materials in aqueous solutions at standard conditions. Such control over material properties is difficult to achieve with current synthesis strategies. Biotemplated synthesis of materials has been demonstrated to be efficient at facilitating the formation of various inorganic species. In this study, we employ a protein cage-based system to synthesize photoactive TiO2 nanoparticles less than 10 nm in diameter. We also demonstrate phase control over the material, with the ability to synthesize both anatase and rutile TiO2 using distinct biomineralization peptides within the protein cage. Finally, using analytical ultracentrifugation, we are able to resolve distinct reaction products and approximate their loading. We find that two distinct species comprise the reaction products, likely representing procapsid-like particles with early, precursor metal oxide clusters, and shells nearly full with crystalline TiO2 nanoparticles, respectively.


Asunto(s)
Materiales Biocompatibles/síntesis química , Proteínas de la Membrana/química , Nanopartículas del Metal/química , Titanio/química , Animales , Línea Celular , Proteínas de la Membrana/administración & dosificación
5.
J Am Chem Soc ; 136(4): 1587-98, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24400989

RESUMEN

Layered materials with controlled thickness down to monolayer are being intensively investigated for unraveling and harnessing their dimension-dependent properties. Copper antimony sulfide (CuSbS2) is a ternary layered semiconductor material that has been considered as an absorber material in thin film solar cells due to its optimal band gap (∼1.5 eV) with high absorption coefficient of over >10(4) cm(-1). We have for the first time developed solution-based approaches for the synthesis of mono-, few-, and multiple layers of CuSbS2. These include a colloidal bottom-up approach for the synthesis of CuSbS2 nanoplates with thicknesses from six layers to several layers, and a hybrid bottom-up-top-down approach for the formation of CuSbS2 mesobelts. The latter can be exfoliated by Li-ion intercalation and sonication to obtain layers down to monolayer thickness. Time-dependent TEM studies provide important insights into the growth mechanism of mesobelts. At the initial stage the nanoplates grow laterally to form nanosheets as the primary structure, followed by their folding and attachment through homoepitaxy to form prolate-like secondary structures. Eventually, these prolate-like structures form mesocrystals by oriented attachment crystal growth. The changes in optical properties with layer thickness down to monolayers have been studied. In order to understand the thickness-dependent optical and electrical properties, we have calculated the electronic structures of mono- and multiple layers (bulk) of CuSbS2 using the hybrid functional method (HSE 06). We find that the monolayers exhibit noticeably different properties from the multilayered or the bulk system, with a markedly increased band gap that is, however, compromised by the presence of localized surface states. These localized states are predominantly composed of energetically favorable Sb pz states, which break off from the rest of the Sb p states that would otherwise be at the top of the gap. The developed solution-based synthesis approaches are versatile and can likely be extended to other complex layered sulfides.

6.
Phys Chem Chem Phys ; 16(16): 7448-54, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24626637

RESUMEN

Metal oxide semiconductors offering simultaneously high specific surface area and high electron mobility are actively sought for fabricating high performance nanoelectronic devices. The present study deals with synthesis of tungsten doped TiO2 (W:TiO2) nanowires (diameter ∼50 nm) by electrospinning and evaluation of their performance in dye-sensitized solar cells (DSCs). Similarity in the ionic radii between W(6+) and Ti(4+) and availability of two free electrons per dopant are the rationale for the present study. Materials were characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray fluorescence measurements, and absorption spectroscopy. Nanowires containing 2 at% W:TiO2 gave 90% higher short circuit current density (JSC) (∼15.39 mA cm(-2)) in DSCs with a nominal increase in the open circuit voltage compared with that of the undoped analogue (JSC ∼8.1 mA cm(-2)). The results are validated by multiple techniques employing absorption spectroscopy, electrochemical impedance spectroscopy and open circuit voltage decay. The above studies show that the observed increments resulted from increased dye-loading, electron density, and electron lifetime in tungsten doped samples.

7.
Nanotechnology ; 24(10): 105706, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23426082

RESUMEN

Monodisperse nanocrystals of a new wurtzite phase of Cu(2)CoSnS(4) (CCTS) have been synthesized using a simple solution-based method. The wurtzite CCTS nanocrystals grow in the shape of nanorods with an average length of 32 ± 2.0 and width of 16 ± 1.5 nm. The more stable stannite phase of CCTS has also been synthesized by increasing the reaction temperature or by a post-high-temperature annealing process. The band gap of wurtzite CCTS nanocrystals is determined to be 1.58 eV. Thin films prepared from the nanocrystal suspension display photoresponse behaviour with white light from a solar simulator, suggesting the potential use of CCTS as an active layer in low-cost thin-film solar cells.

8.
Nanotechnology ; 24(4): 045603, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23296127

RESUMEN

The hierarchical organization of inorganic nanostructures has potential applications in diverse areas such as photocatalytic systems, composites, drug delivery and biomedicine. An attractive approach for this purpose is the use of biological organisms as templates since they often possess highly ordered arrays of protein molecules that can be genetically engineered for specific binding. Indeed, recent studies have shown that viruses can be used as versatile templates for the assembly of a variety of nanostructured materials because of their unique structural and chemical diversity. These highly ordered protein templates can be employed or adapted for specific binding interactions. Herein we report the directed self-assembly of independently synthesized 5 nm CdS nanocrystal quantum dots on ∼60 nm procapsid shells derived from wild-type P22 bacteriophage. The bacteriophage P22 shell is comprised of hexameric and pentameric clusters of subunits known as capsomeres. The pre-synthesized CdS QDs show the corresponding hexameric and pentameric patterns of assembly on these P22 shells, possibly by interacting with particular protein pockets.


Asunto(s)
Bacteriófago P22/química , Bacteriófago P22/ultraestructura , Compuestos de Cadmio/química , Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Nanoestructuras/química , Puntos Cuánticos , Compuestos de Selenio/química , Adsorción , Cristalización/métodos , Ensayo de Materiales , Impresión Molecular/métodos , Nanoestructuras/ultraestructura , Tamaño de la Partícula
9.
Nanoscale Adv ; 5(10): 2724-2742, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37205287

RESUMEN

Transition-metal chalcogenide nanostructures provide a unique material platform to engineer next-generation energy storage devices such as lithium-ion, sodium-ion, and potassium-ion batteries and flexible supercapacitors. The transition-metal chalcogenide nanocrystals and thin films have enhanced electroactive sites for redox reactions and hierarchical flexibility of structure and electronic properties in the multinary compositions. They also consist of more earth-abundant elements. These properties make them attractive and more viable new electrode materials for energy storage devices compared to the traditional materials. This review highlights the recent advances in chalcogenide-based electrodes for batteries and flexible supercapacitors. The viability and structure-property relation of these materials are explored. The use of various chalcogenide nanocrystals supported on carbonaceous substrates, two-dimensional transition metal chalcogenides, and novel MXene-based chalcogenide heterostructures as electrode materials to improve the electrochemical performance of lithium-ion batteries is discussed. The sodium-ion and potassium-ion batteries offer a more viable alternative to lithium-ion technology as they consist of readily available source materials. Application of various transition metal chalcogenides such as MoS2, MoSe2, VS2, and SnSx, composite materials, and heterojunction bimetallic nanosheets composed of multi-metals as electrodes to enhance the long-term cycling stability, rate capability, and structural strength to counteract the large volume expansion during the ion intercalation/deintercalation processes is highlighted. The promising performances of layered chalcogenides and various chalcogenide nanowire compositions as electrodes for flexible supercapacitors are also discussed in detail. The review also details the progress made in new chalcogenide nanostructures and layered mesostructures for energy storage applications.

10.
Plants (Basel) ; 12(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37050122

RESUMEN

Causonis trifolia (L.) Mabb. & J.Wen, commonly known as "fox grape", is an ethnomedicinally important twining herb of the Vitaceae family, and it is used by ethnic communities for its wide range of therapeutic properties. Our research aims to investigate the chemical composition; antioxidant, anti-inflammatory, and antidiabetic activities; and mechanisms of interaction between the identified selective chemical compounds and the target proteins associated with antioxidant, anti-inflammatory, and antidiabetic effects of the optimised phenolic extract of Causonis trifolia (L.) Mabb. & J.Wen, shoot (PECTS) to endorse the plant as a potential drug candidate for a future bioprospecting programme. Here, we employed the response surface methodology (RSM) with a Box-Behnken design to enrich the methanolic extract of C. trifolia shoot with phenolic ingredients by optimising three key parameters: solvent concentration (% v/v, methanol:water), extraction temperature (°C), and extraction duration (hours). From the quantitative phytochemical estimation, it was evident that the PECTS contained good amounts of phenolics, flavonoids, tannins, and alkaloids. During the HPLC analysis, we identified a total of eight phenolic and flavonoid compounds (gallic acid, catechin hydrate, chlorogenic acid, caffeic acid, p-coumaric acid, sinapic acid, coumarin, and kaempferol) and quantified their respective contents from the PECTS. The GC-MS analysis of the PECTS highlighted the presence of 19 phytochemicals. In addition, the bioactivity study of the PECTS showed remarkable potentiality as antioxidant, anti-inflammatory, and antidiabetic agents. In silico molecular docking and computational molecular modelling were employed to investigate the anti-inflammatory, antioxidant, and antidiabetic properties of the putative bioactive compounds derived from the PECTS using the GC-MS technique to understand the drug-receptor interactions, including their binding pattern. Out of the 19 phytocompounds identified by the GC-MS analysis, one compound, ergosta-5,22-dien-3-ol, acetate, (3ß,22E), exhibited the best binding conformations with the target proteins involved in anti-inflammatory (e.g., Tnf-α and Cox-2), antioxidant (SOD), and antidiabetic (e.g., α-amylase and aldo reductase) activities. The nontoxic nature of this optimised extract was also evident during the in vitro cell toxicity assay against the Vero cell line and the in vivo acute toxicity study on BALB/c mice. We believe the results of the present study will pave the way for the invention of novel drugs efficacious for several ailments using the C. trifolia plant.

11.
Dalton Trans ; 51(20): 8067, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35574669

RESUMEN

Correction for 'Solvent-driven azide-induced mononuclear discrete versus one-dimensional polymeric aromatic Möbius cadmium(II) complexes of an N6 tetradentate helical ligand' by Farhad Akbari Afkhami et al., Dalton Trans., 2017, 46, 14888-14896, https://doi.org/10.1039/C7DT02952G.

12.
Sci Rep ; 12(1): 7052, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488114

RESUMEN

This work focuses on the nature of magnetic anisotropy in 2.5-16 micron thick films of nickel ferrite (NFO) grown by liquid phase epitaxy (LPE). The technique, ideal for rapid growth of epitaxial oxide films, was utilized for films on (100) and (110) substrates of magnesium gallate (MGO). The motivation was to investigate the dependence of the growth induced anisotropy field on film thickness since submicron films of NFO were reported to show a very high anisotropy. The films grown at 850-875 C and subsequently annealed at 1000 C were found to be epitaxial, with the out-of-plane lattice constant showing unanticipated decrease with increasing film thickness and the estimated in-plane lattice constant increasing with the film thickness. The uniaxial anisotropy field Hσ, estimated from X-ray diffraction data, ranged from 2.8-7.7 kOe with the films on (100) MGO having a higher Hσ value than for the films on (110) MGO. Ferromagnetic resonance (FMR) measurements for in-plane and out-of-plane static magnetic field were utilized to determine both the magnetocrystalline the anisotropy field H4 and the uniaxial anisotropy field Ha. Values of H4 range from -0.24 to -0.86 kOe. The uniaxial anisotropy field Ha was an order of magnitude smaller than Hσ and it decreased with increasing film thickness for NFO films on (100) MGO, but Ha increased with film thickness for films on (110) MGO substrates. These observations indicate that the origin of the induced anisotropy could be attributed to several factors including (i) strain due to mismatch in the film-substrate lattice constants, (ii) possible variations in the bond lengths and bond angles in NFO during the growth process, and (iii) the strain arising from mismatch in the thermal expansion coefficients of the film and the substrate due to the high growth and annealing temperatures involved in the LPE technique. The LPE films of NFO on MGO substrates studied in this work are of interest for use in high frequency devices.

13.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500786

RESUMEN

The current need to accelerate the adoption of photovoltaic (PV) systems has increased the need to explore new nanomaterials that can harvest and convert solar energy into electricity. Transition metal dichalcogenides (TMDCs) are good candidates because of their tunable physical and chemical properties. CuCrS2 has shown good electrical and thermoelectrical properties; however, its optical and photoconductivity properties remain unexplored. In this study, we synthesized CuCrS2 nanosheets with average dimensions of 43.6 ± 6.7 nm in length and 25.6 ± 4.1 nm in width using a heat-up synthesis approach and fabricated films by the spray-coating method to probe their photoresponse. This method yielded CuCrS2 nanosheets with an optical bandgap of ~1.21 eV. The fabricated film had an average thickness of ~570 nm, exhibiting a net current conversion efficiency of ~11.3%. These results demonstrate the potential use of CuCrS2 as an absorber layer in solar cells.

14.
J Am Chem Soc ; 133(29): 11072-5, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21702462

RESUMEN

Monodisperse wurtzite CuIn(x)Ga(1-x)S(2) nanocrystals have been synthesized over the entire composition range using a facile solution-based method. Depending on the chemical composition and synthesis conditions, the morphology of the nanocrystals can be controlled in the form of bullet-like, rod-like, and tadpole-like shapes. The band gap of the nanocrystals increases linearly with increasing Ga concentration, with band gap values for the end members being close to those observed in the bulk. Colloidal suspensions of the nanocrystals are attractive for use as inks for low-cost fabrication of thin film solar cells by spin or spray coating.

15.
J Am Chem Soc ; 133(51): 20716-9, 2011 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-22126401

RESUMEN

Nanocrystals and nanoclusters of the room-temperature magnetic spinel CuCr(2)S(4) have been synthesized using a facile solution-based method. The synthesis involves hot injection of an excess of 1-dodecanethiol (1-DDT) into a boiling coordinating solvent containing CuCl(2) and CrCl(3)·6H(2)O. Using octadecylamine (ODA) as a solvent yields cube-shaped nanocrystals with an average size of 20 ± 2 nm, while with oleylamine (OLA), nanoclusters with an average size of 31 ± 2.5 nm are obtained. In both cases, powder X-ray diffraction patterns confirmed the formation of the pure spinel phase without any impurities. While the synthesized powders are superparamagnetic near room temperature, they exhibit ferromagnetic behavior at lower temperatures, with magnetization (M(S)) values of 30 emu/g (1.63 µ(B)/f.u.) and 33 emu/g (1.79 µ(B)/f.u.) for the ODA- and OLA-capped nanocrystals and nanoclusters, respectively, at 5 K.

16.
Nano Lett ; 10(7): 2555-61, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20586433

RESUMEN

We have investigated the nanoscale switching properties of strain-engineered BiFeO(3) thin films deposited on LaAlO(3) substrates using a combination of scanning probe techniques. Polarized Raman spectral analysis indicates that the nearly tetragonal films have monoclinic (Cc) rather than P4mm tetragonal symmetry. Through local switching-spectroscopy measurements and piezoresponse force microscopy, we provide clear evidence of ferroelectric switching of the tetragonal phase, but the polarization direction, and therefore its switching, deviates strongly from the expected (001) tetragonal axis. We also demonstrate a large and reversible, electrically driven structural phase transition from the tetragonal to the rhombohedral polymorph in this material, which is promising for a plethora of applications.

17.
J Am Chem Soc ; 132(49): 17354-7, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21090711

RESUMEN

Ordered ZnS and CdS nanocrystal assemblies have been synthesized by a facile bioinspired approach consisting of an initial self-assembly of engineered proteins into spherical biotemplates and a subsequent protein-directed nucleation and growth of ZnS and CdS nanocrystals symmetrically distributed over the self-assembled biotemplates.


Asunto(s)
Bacteriófago P22/química , Proteínas de la Cápside/química , Nanopartículas/química , Nanoestructuras/química , Nanotecnología/métodos , Sulfuros/química , Bacteriófago P22/genética , Compuestos de Cadmio/química , Proteínas de la Cápside/genética , Modelos Moleculares , Nanopartículas/ultraestructura , Nanoestructuras/ultraestructura , Ingeniería de Proteínas , Compuestos de Zinc/química
18.
Nat Mater ; 8(1): 56-61, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19079243

RESUMEN

Knowledge of the spin polarization is of fundamental importance for the use of a material in spintronics applications. Here, we used femtosecond optical excitation of half-metals to distinguish between half-metallic and metallic properties. Because the direct energy transfer by Elliot-Yafet scattering is blocked in a half-metal, the demagnetization time is a measure for the degree of half-metallicity. We propose that this characteristic enables us vice versa to establish a novel and fast characterization tool for this highly important material class used in spin-electronic devices. The technique has been applied to a variety of materials where the spin polarization at the Fermi level ranges from 45 to 98%: Ni, Co(2)MnSi, Fe(3)O(4), La(0.66)Sr(0.33)MnO(3) and CrO(2).

19.
Nanoscale Adv ; 2(8): 3069-3082, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36134292

RESUMEN

Multinary chalcogenide semiconductor nanocrystals are a unique class of materials as they offer flexibility in composition, structure, and morphology for controlled band gap and optical properties. They offer a vast selection of materials for energy conversion, storage, and harvesting applications. Among the multinary chalcogenides, Cu-based compounds are the most attractive in terms of sustainability as many of them consist of earth-abundant elements. There has been immense progress in the field of Cu-based chalcogenides for device applications in the recent years. This paper reviews the state of the art synthetic strategies and application of multinary Cu-chalcogenide nanocrystals in photovoltaics, photocatalysis, light emitting diodes, supercapacitors, and luminescent solar concentrators. This includes the synthesis of ternary, quaternary, and quinary Cu-chalcogenide nanocrystals. The review also highlights some emerging experimental and computational characterization approaches for multinary Cu-chalcogenide semiconductor nanocrystals. It discusses the use of different multinary Cu-chalcogenide compounds, achievements in device performance, and the recent progress made with multinary Cu-chalcogenide nanocrystals in various energy conversion and energy storage devices. The review concludes with an outlook on some emerging and future device applications for multinary Cu-chalcogenides, such as scalable luminescent solar concentrators and wearable biomedical electronics.

20.
RSC Adv ; 10(47): 27954-27960, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35519142

RESUMEN

It is now well-established that boundaries separating tetragonal-like (T) and rhombohedral-like (R) phases in BiFeO3 thin films can show enhanced electrical conductivity. However, the origin of this conductivity remains elusive. Here, we study mixed-phase BiFeO3 thin films, where local populations of T and R can be readily altered using stress and electric fields. We observe that phase boundary electrical conductivity in regions which have undergone stress-writing is significantly greater than in the virgin microstructure. We use high-end electron microscopy techniques to identify key differences between the R-T boundaries present in stress-written and as-grown microstructures, to gain a better understanding of the mechanism responsible for electrical conduction. We find that point defects (and associated mixed valence states) are present in both electrically conducting and non-conducting regions; crucially, in both cases, the spatial distribution of defects is relatively homogeneous: there is no evidence of phase boundary defect aggregation. Atomic resolution imaging reveals that the only significant difference between non-conducting and conducting boundaries is the elastic distortion evident - detailed analysis of localised crystallography shows that the strain accommodation across the R-T boundaries is much more extensive in stress-written than in as-grown microstructures; this has a substantial effect on the straightening of local bonds within regions seen to electrically conduct. This work therefore offers distinct evidence that the elastic distortion is more important than point defect accumulation in determining the phase boundary conduction properties in mixed-phase BiFeO3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA