Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 23(2): 125-140, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34522048

RESUMEN

Cellular pathways that repair chromosomal double-strand breaks (DSBs) have pivotal roles in cell growth, development and cancer. These DSB repair pathways have been the target of intensive investigation, but one pathway - alternative end joining (a-EJ) - has long resisted elucidation. In this Review, we highlight recent progress in our understanding of a-EJ, especially the assignment of DNA polymerase theta (Polθ) as the predominant mediator of a-EJ in most eukaryotes, and discuss a potential molecular mechanism by which Polθ-mediated end joining (TMEJ) occurs. We address possible cellular functions of TMEJ in resolving DSBs that are refractory to repair by non-homologous end joining (NHEJ), DSBs generated following replication fork collapse and DSBs present owing to stalling of repair by homologous recombination. We also discuss how these context-dependent cellular roles explain how TMEJ can both protect against and cause genome instability, and the emerging potential of Polθ as a therapeutic target in cancer.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Polimerasa Dirigida por ADN/metabolismo , Neoplasias/enzimología , Animales , Replicación del ADN , Humanos , Modelos Biológicos , Mutación/genética , Neoplasias/genética , ADN Polimerasa theta
2.
Nature ; 625(7995): 585-592, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200309

RESUMEN

Oncogene-induced replication stress generates endogenous DNA damage that activates cGAS-STING-mediated signalling and tumour suppression1-3. However, the precise mechanism of cGAS activation by endogenous DNA damage remains enigmatic, particularly given that high-affinity histone acidic patch (AP) binding constitutively inhibits cGAS by sterically hindering its activation by double-stranded DNA (dsDNA)4-10. Here we report that the DNA double-strand break sensor MRE11 suppresses mammary tumorigenesis through a pivotal role in regulating cGAS activation. We demonstrate that binding of the MRE11-RAD50-NBN complex to nucleosome fragments is necessary to displace cGAS from acidic-patch-mediated sequestration, which enables its mobilization and activation by dsDNA. MRE11 is therefore essential for cGAS activation in response to oncogenic stress, cytosolic dsDNA and ionizing radiation. Furthermore, MRE11-dependent cGAS activation promotes ZBP1-RIPK3-MLKL-mediated necroptosis, which is essential to suppress oncogenic proliferation and breast tumorigenesis. Notably, downregulation of ZBP1 in human triple-negative breast cancer is associated with increased genome instability, immune suppression and poor patient prognosis. These findings establish MRE11 as a crucial mediator that links DNA damage and cGAS activation, resulting in tumour suppression through ZBP1-dependent necroptosis.


Asunto(s)
Transformación Celular Neoplásica , Proteína Homóloga de MRE11 , Nucleosomas , Nucleotidiltransferasas , Humanos , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Daño del ADN , Proteína Homóloga de MRE11/metabolismo , Necroptosis , Nucleosomas/metabolismo , Nucleotidiltransferasas/metabolismo , Radiación Ionizante , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Inestabilidad Genómica
3.
Nature ; 623(7988): 836-841, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968395

RESUMEN

Timely repair of chromosomal double-strand breaks is required for genome integrity and cellular viability. The polymerase theta-mediated end joining pathway has an important role in resolving these breaks and is essential in cancers defective in other DNA repair pathways, thus making it an emerging therapeutic target1. It requires annealing of 2-6 nucleotides of complementary sequence, microhomologies, that are adjacent to the broken ends, followed by initiation of end-bridging DNA synthesis by polymerase θ. However, the other pathway steps remain inadequately defined, and the enzymes required for them are unknown. Here we demonstrate requirements for exonucleolytic digestion of unpaired 3' tails before polymerase θ can initiate synthesis, then a switch to a more accurate, processive and strand-displacing polymerase to complete repair. We show the replicative polymerase, polymerase δ, is required for both steps; its 3' to 5' exonuclease activity for flap trimming, then its polymerase activity for extension and completion of repair. The enzymatic steps that are essential and specific to this pathway are mediated by two separate, sequential engagements of the two polymerases. The requisite coupling of these steps together is likely to be facilitated by physical association of the two polymerases. This pairing of polymerase δ with a polymerase capable of end-bridging synthesis, polymerase θ, may help to explain why the normally high-fidelity polymerase δ participates in genome destabilizing processes such as mitotic DNA synthesis2 and microhomology-mediated break-induced replication3.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Polimerasa III , ADN Polimerasa Dirigida por ADN , ADN/biosíntesis , ADN/química , ADN/metabolismo , ADN Polimerasa III/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Inestabilidad Genómica , ADN Polimerasa theta
4.
Mol Cell ; 78(5): 951-959.e6, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32359443

RESUMEN

BRCA1 promotes the DNA end resection and RAD51 loading steps of homologous recombination (HR). Whether these functions can be uncoupled, and whether mutant proteins retaining partial activity can complement one another, is unclear and could affect the severity of BRCA1-associated Fanconi anemia (FA). Here we generated a Brca1CC mouse with a coiled-coil (CC) domain deletion. Brca1CC/CC mice are born at low frequencies, and post-natal mice have FA-like abnormalities, including bone marrow failure. Intercrossing with Brca1Δ11, which is homozygous lethal, generated Brca1CC/Δ11 mice at Mendelian frequencies that were indistinguishable from Brca1+/+ mice. Brca1CC and Brca1Δ11 proteins were individually responsible for counteracting 53BP1-RIF1-Shieldin activity and promoting RAD51 loading, respectively. Thus, Brca1CC and Brca1Δ11 alleles represent separation-of-function mutations that combine to provide a level of HR sufficient for normal development and hematopoiesis. Because BRCA1 activities can be genetically separated, compound heterozygosity for functional complementary mutations may protect individuals from FA.


Asunto(s)
Proteína BRCA1/genética , Recombinación Homóloga/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Animales , Proteína BRCA1/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Exones , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
5.
Blood ; 141(19): 2372-2389, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-36580665

RESUMEN

Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.


Asunto(s)
Proteína BRCA1 , Daño del ADN , Leucemia , Animales , Ratones , Proteína BRCA2 , ADN/metabolismo , Leucemia/enzimología , Leucemia/genética , ADN Polimerasa theta
6.
Breast Cancer Res ; 26(1): 20, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297352

RESUMEN

BACKGROUND: Patients with inflammatory breast cancer (IBC) have overall poor clinical outcomes, with triple-negative IBC (TN-IBC) being associated with the worst survival, warranting the investigation of novel therapies. Preclinical studies implied that ruxolitinib (RUX), a JAK1/2 inhibitor, may be an effective therapy for TN-IBC. METHODS: We conducted a randomized phase II study with nested window-of-opportunity in TN-IBC. Treatment-naïve patients received a 7-day run-in of RUX alone or RUX plus paclitaxel (PAC). After the run-in, those who received RUX alone proceeded to neoadjuvant therapy with either RUX + PAC or PAC alone for 12 weeks; those who had received RUX + PAC continued treatment for 12 weeks. All patients subsequently received 4 cycles of doxorubicin plus cyclophosphamide prior to surgery. Research tumor biopsies were performed at baseline (pre-run-in) and after run-in therapy. Tumors were evaluated for phosphorylated STAT3 (pSTAT3) by immunostaining, and a subset was also analyzed by RNA-seq. The primary endpoint was the percent of pSTAT3-positive pre-run-in tumors that became pSTAT3-negative. Secondary endpoints included pathologic complete response (pCR). RESULTS: Overall, 23 patients were enrolled, of whom 21 completed preoperative therapy. Two patients achieved pCR (8.7%). pSTAT3 and IL-6/JAK/STAT3 signaling decreased in post-run-in biopsies of RUX-treated samples, while sustained treatment with RUX + PAC upregulated IL-6/JAK/STAT3 signaling compared to RUX alone. Both treatments decreased GZMB+ T cells implying immune suppression. RUX alone effectively inhibited JAK/STAT3 signaling but its combination with PAC led to incomplete inhibition. The immune suppressive effects of RUX alone and in combination may negate its growth inhibitory effects on cancer cells. CONCLUSION: In summary, the use of RUX in TN-IBC was associated with a decrease in pSTAT3 levels despite lack of clinical benefit. Cancer cell-specific-targeting of JAK2/STAT3 or combinations with immunotherapy may be required for further evaluation of JAK2/STAT3 signaling as a cancer therapeutic target. TRIAL REGISTRATION: www. CLINICALTRIALS: gov , NCT02876302. Registered 23 August 2016.


Asunto(s)
Neoplasias Inflamatorias de la Mama , Nitrilos , Paclitaxel , Pirazoles , Pirimidinas , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Inflamatorias de la Mama/tratamiento farmacológico , Neoplasias Inflamatorias de la Mama/patología , Interleucina-6 , Terapia Neoadyuvante , Nitrilos/uso terapéutico , Paclitaxel/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
7.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35753702

RESUMEN

Spatial transcriptomics (ST) technologies allow researchers to examine transcriptional profiles along with maintained positional information. Such spatially resolved transcriptional characterization of intact tissue samples provides an integrated view of gene expression in its natural spatial and functional context. However, high-throughput sequencing-based ST technologies cannot yet reach single cell resolution. Thus, similar to bulk RNA-seq data, gene expression data at ST spot-level reflect transcriptional profiles of multiple cells and entail the inference of cell-type composition within each ST spot for valid and powerful subsequent analyses. Realizing the critical importance of cell-type decomposition, multiple groups have developed ST deconvolution methods. The aim of this work is to review state-of-the-art methods for ST deconvolution, comparing their strengths and weaknesses. In particular, we construct ST spots from single-cell level ST data to assess the performance of 10 methods, with either ideal reference or non-ideal reference. Furthermore, we examine the performance of these methods on spot- and bead-level ST data by comparing estimated cell-type proportions to carefully matched single-cell ST data. In comparing the performance on various tissues and technological platforms, we concluded that RCTD and stereoscope achieve more robust and accurate inferences.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos
8.
Mol Cell ; 63(4): 662-673, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27453047

RESUMEN

DNA polymerase theta (Pol θ)-mediated end joining (TMEJ) has been implicated in the repair of chromosome breaks, but its cellular mechanism and role relative to canonical repair pathways are poorly understood. We show that it accounts for most repairs associated with microhomologies and is made efficient by coupling a microhomology search to removal of non-homologous tails and microhomology-primed synthesis across broken ends. In contrast to non-homologous end joining (NHEJ), TMEJ efficiently repairs end structures expected after aborted homology-directed repair (5' to 3' resected ends) or replication fork collapse. It typically does not compete with canonical repair pathways but, in NHEJ-deficient cells, is engaged more frequently and protects against translocation. Cell viability is also severely impaired upon combined deficiency in Pol θ and a factor that antagonizes end resection (Ku or 53BP1). TMEJ thus helps to sustain cell viability and genome stability by rescuing chromosome break repair when resection is misregulated or NHEJ is compromised.


Asunto(s)
Rotura Cromosómica , Reparación del ADN por Unión de Extremidades , ADN Polimerasa Dirigida por ADN/metabolismo , Inestabilidad Genómica , Animales , Sistemas CRISPR-Cas , Línea Celular Transformada , ADN Polimerasa Dirigida por ADN/deficiencia , ADN Polimerasa Dirigida por ADN/genética , Genotipo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Ratones Noqueados , Fenotipo , Factores de Tiempo , ADN Polimerasa theta
9.
Nucleic Acids Res ; 49(9): 5095-5105, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33963863

RESUMEN

Genome integrity and genome engineering require efficient repair of DNA double-strand breaks (DSBs) by non-homologous end joining (NHEJ), homologous recombination (HR), or alternative end-joining pathways. Here we describe two complementary methods for marker-free quantification of DSB repair pathway utilization at Cas9-targeted chromosomal DSBs in mammalian cells. The first assay features the analysis of amplicon next-generation sequencing data using ScarMapper, an iterative break-associated alignment algorithm to classify individual repair products based on deletion size, microhomology usage, and insertions. The second assay uses repair pathway-specific droplet digital PCR assays ('PathSig-dPCR') for absolute quantification of signature DSB repair outcomes. We show that ScarMapper and PathSig-dPCR enable comprehensive assessment of repair pathway utilization in different cell models, after a variety of experimental perturbations. We use these assays to measure the differential impact of DNA end resection on NHEJ, HR and polymerase theta-mediated end joining (TMEJ) repair. These approaches are adaptable to any cellular model system and genomic locus where Cas9-mediated targeting is feasible. Thus, ScarMapper and PathSig-dPCR allow for systematic fate mapping of a targeted DSB with facile and accurate quantification of DSB repair pathway choice at endogenous chromosomal loci.


Asunto(s)
Proteína 9 Asociada a CRISPR , Roturas del ADN de Doble Cadena , Reparación del ADN , Algoritmos , Animales , Línea Celular , Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Sitios Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Reacción en Cadena de la Polimerasa , Reparación del ADN por Recombinación
10.
Proc Natl Acad Sci U S A ; 117(15): 8476-8485, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32234782

RESUMEN

DNA polymerase theta mediates an end joining pathway (TMEJ) that repairs chromosome breaks. It requires resection of broken ends to generate long, 3' single-stranded DNA tails, annealing of complementary sequence segments (microhomologies) in these tails, followed by microhomology-primed synthesis sufficient to resolve broken ends. The means by which microhomologies are identified is thus a critical step in this pathway, but is not understood. Here we show microhomologies are identified by a scanning mechanism initiated from the 3' terminus and favoring bidirectional progression into flanking DNA, typically to a maximum of 15 nucleotides into each flank. Polymerase theta is frequently insufficiently processive to complete repair of breaks in microhomology-poor, AT-rich regions. Aborted synthesis leads to one or more additional rounds of microhomology search, annealing, and synthesis; this promotes complete repair in part because earlier rounds of synthesis generate microhomologies de novo that are sufficiently long that synthesis is more processive. Aborted rounds of synthesis are evident in characteristic genomic scars as insertions of 3 to 30 bp of sequence that is identical to flanking DNA ("templated" insertions). Templated insertions are present at higher levels in breast cancer genomes from patients with germline BRCA1/2 mutations, consistent with an addiction to TMEJ in these cancers. Our work thus describes the mechanism for microhomology identification and shows how it both mitigates limitations implicit in the microhomology requirement and generates distinctive genomic scars associated with pathogenic genome instability.


Asunto(s)
Neoplasias de la Mama/genética , Rotura Cromosómica , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Polimerasa Dirigida por ADN/fisiología , Genoma Humano , Inestabilidad Genómica , Animales , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Mutación de Línea Germinal , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ADN Polimerasa theta
11.
Cancer ; 127(23): 4447-4454, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34379792

RESUMEN

BACKGROUND: Adavosertib (AZD1775) is an inhibitor of the Wee1 kinase. The authors conducted a phase 1b trial to evaluate the safety of adavosertib in combination with definitive chemoradiotherapy for patients with newly diagnosed, intermediate-risk/high-risk, locally advanced head and neck squamous cell carcinoma (HNSCC). METHODS: Twelve patients with intermediate-risk/high-risk HNSCC were enrolled, including those with p16-negative tumors of the oropharynx, p16-positive tumors of the oropharynx with ≥10 tobacco pack-years, and tumors of the larynx/hypopharynx regardless of p16 status. All patients were treated with an 8-week course of concurrent intensity-modulated radiotherapy at 70 grays (Gy) (2 Gy daily in weeks 1-7), cisplatin 30 mg/m2 weekly (in weeks 1-7), and adavosertib (twice daily on Monday, Tuesday, and Wednesday of weeks 1, 2, 4, 5, 7, and 8). The primary objective was to determine the maximum tolerated dose and the recommended phase 2 dose of adavosertib given concurrently with radiation and cisplatin. Secondary objectives were to determine the 12-week objective response rate and progression-free and overall survival. RESULTS: Three patients (25%) experienced a dose-limiting toxicity, including febrile neutropenia (n = 2) and grade 4 thromboembolism (n = 1). Two dose-limiting toxicities occurred with adavosertib at 150 mg. The median follow-up was 14.7 months. The 12-week posttreatment objective response rate determined by positron emission tomography/computed tomography was 100%. The 1-year progression-free and overall survival rates were both 90%. The maximum tolerated dose of adavosertib was 100 mg. CONCLUSIONS: Adavosertib 100 mg (twice daily on Monday, Tuesday, and Wednesday of weeks 1, 2, 4, 5, 7, and 8), in combination with 70 Gy of intensity-modulated radiotherapy and cisplatin 30 mg/m2 , is the recommended phase 2 dose for patients with HNSCC.


Asunto(s)
Cisplatino , Neoplasias de Cabeza y Cuello , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Quimioradioterapia/efectos adversos , Quimioradioterapia/métodos , Cisplatino/efectos adversos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Pirazoles , Pirimidinonas , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia
12.
Br J Cancer ; 125(4): 576-581, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34017087

RESUMEN

BACKGROUND: p53 plays a key role in the DNA repair process and response to ionising radiation. We sought to determine the clinical phenotype of TP53 mutations and p53 pathway alterations in patients with rhabdomyosarcoma (RMS) and Ewing sarcoma (ES) treated with radiation. METHODS: Of patients with available genomic sequencing, we identified 109 patients with RMS and ES treated to a total of 286 radiation sites. We compared irradiated tumour control among tumours with TP53 mutations (n = 40) to those that were TP53 wild-type (n = 246). We additionally compared irradiated tumour control among tumours with any p53 pathway alteration (defined as tumours with TP53 mutations or TP53 wild-type tumours identified to have MDM2/4 amplification and/or CDKN2A/B deletion, n = 78) to those without such alterations (n = 208). RESULTS: The median follow-up was 26 months from radiation. TP53 mutations were associated with worse irradiated tumour control among the entire cohort (hazard ratio, HR = 2.8, P < 0.0001). Tumours with any p53 pathway alteration also had inferior irradiated tumour control (HR = 2.0, P = 0.003). On multivariable analysis, after controlling for tumour histology, intent of radiation, presence of gross disease, and biologically effective dose, TP53 mutations continued to be associated with a radioresistant phenotype (HR = 7.1, P < 0.0001). CONCLUSIONS: Our results show that TP53 mutations are associated with increased radioresistance in RMS and ES. Novel strategies to overcome this radioresistance are important for improved outcomes in p53 disruptive RMS and ES.


Asunto(s)
Mutación , Tolerancia a Radiación , Rabdomiosarcoma/genética , Sarcoma de Ewing/genética , Proteína p53 Supresora de Tumor/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Humanos , Lactante , Persona de Mediana Edad , Pronóstico , Rabdomiosarcoma/radioterapia , Sarcoma de Ewing/radioterapia , Análisis de Secuencia de ADN , Adulto Joven
13.
Mol Cell ; 52(3): 353-65, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24120666

RESUMEN

The DNA damage response (DDR) is activated by oncogenic stress, but the mechanisms by which this occurs, and the particular DDR functions that constitute barriers to tumorigenesis, remain unclear. We established a mouse model of sporadic oncogene-driven breast tumorigenesis in a series of mutant mouse strains with specific DDR deficiencies to reveal a role for the Mre11 complex in the response to oncogene activation. We demonstrate that an Mre11-mediated DDR restrains mammary hyperplasia by effecting an oncogene-induced G2 arrest. Impairment of Mre11 complex functions promotes the progression of mammary hyperplasias into invasive and metastatic breast cancers, which are often associated with secondary inactivation of the Ink4a-Arf (CDKN2a) locus. These findings provide insight into the mechanism of DDR engagement by activated oncogenes and highlight genetic interactions between the DDR and Ink4a-Arf pathways in suppression of oncogene-driven tumorigenesis and metastasis.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis , Proteínas de Unión al ADN/metabolismo , Oncogenes , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hiperplasia/genética , Proteína Homóloga de MRE11 , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Ratones , Metástasis de la Neoplasia/genética
14.
Mol Syst Biol ; 15(3): e8604, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886052

RESUMEN

The cell cycle is canonically described as a series of four consecutive phases: G1, S, G2, and M. In single cells, the duration of each phase varies, but the quantitative laws that govern phase durations are not well understood. Using time-lapse microscopy, we found that each phase duration follows an Erlang distribution and is statistically independent from other phases. We challenged this observation by perturbing phase durations through oncogene activation, inhibition of DNA synthesis, reduced temperature, and DNA damage. Despite large changes in durations in cell populations, phase durations remained uncoupled in individual cells. These results suggested that the independence of phase durations may arise from a large number of molecular factors that each exerts a minor influence on the rate of cell cycle progression. We tested this model by experimentally forcing phase coupling through inhibition of cyclin-dependent kinase 2 (CDK2) or overexpression of cyclin D. Our work provides an explanation for the historical observation that phase durations are both inherited and independent and suggests how cell cycle progression may be altered in disease states.


Asunto(s)
Ciclo Celular/fisiología , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Replicación del ADN/genética , Ciclina D/genética , Ciclina D/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Daño del ADN , Humanos , Oncogenes/genética , Temperatura
16.
J Mol Biol ; 436(4): 168424, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159716

RESUMEN

Genomic stability relies on a multifaceted and evolutionarily conserved DNA damage response (DDR). In multicellular organisms, an integral facet of the DDR involves the activation of the immune system to eliminate cells with persistent DNA damage. Recent research has shed light on a complex array of nucleic acid sensors crucial for innate immune activation in response to oncogenic stress-associated DNA damage, a process vital for suppressing tumor formation. Yet, these immune sensing pathways may also be co-opted to foster tolerance of chromosomal instability, thereby driving cancer progression. This review aims to provide an updated overview of how the innate immune system detects and responds to DNA damage. An improved understanding of the regulatory intricacies governing this immune response may uncover new avenues for cancer prevention and therapeutic intervention.


Asunto(s)
Daño del ADN , Reconocimiento de Inmunidad Innata , Neoplasias , Humanos , Daño del ADN/inmunología , Reparación del ADN , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología
17.
J Clin Oncol ; : JCO2400003, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298718

RESUMEN

PURPOSE: To assess safety and immune biomarkers after preoperative radiation therapy (RT) and anti-PD1 therapy in breast cancer. MATERIALS AND METHODS: A phase I/IIb trial of pembrolizumab with RT was conducted in patients with triple-negative breast cancer (TNBC) and hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2-) breast cancer. All received pembrolizumab followed by a second cycle + RT (anti-PD1/RT) of 24 Gy/three daily fractions delivered to the breast tumor and then neoadjuvant chemotherapy (NAC). Blood and tumor biopsies were obtained at baseline, after anti-PD1, and after anti-PD-RT. Coprimary end points were safety and change in tumor-infiltrating lymphocytes (TILs). Secondary end points were pathologic complete response (pCR), residual cancer burden (RCB) rates, and event-free survival (EFS). RESULTS: Sixty-six patients with stage I-III breast cancer (54 TNBC, 12 HR+/HER2-) were enrolled. The median follow-up was 32 months. Safety end point was met. Incidence of grade ≥3 toxicities was 41%. The pCR rate was 59.2%, 33.3%, and 54.5% for the TNBC, HR+/HER2-, and entire cohort, respectively. A total of 77.8% of TNBC and 41.6% of HR+/HER2- had a near pCR (RCB 0-1). The 3-year EFS was 80%. In the entire cohort, PD-L1 expression increased after anti-PD1 (median Combined Positive Score [CPS], 7.49-23.20; 95% CI, -41.88 to -6.30; P = .044) and anti-PD1/RT (median CPS, 7.49-23.41; 95% CI, -41.88 to -6.30; P = .009), compared with baseline. In TNBC, adding RT to anti-PD1 significantly decreased TILs (28.9%-17.1%; 95% CI, 2.46 to 21.09; P = .014). Baseline TILs correlated with PD-L1 expression and TNF-a. CONCLUSION: Preoperative RT with pembrolizumab is safe and results in high pCR rates and 3-year EFS, despite the lack of pembrolizumab during NAC. PD-L1 and TILs may be predictive biomarkers for preoperative anti-PD1/RT response. Reduction in TILs after adding RT to anti-PD1 highlights the importance of treatment sequencing.

18.
Clin Breast Cancer ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39317637

RESUMEN

PURPOSE: Understanding quality of life (QOL) implications of individual components of breast cancer treatment is important as systemic therapies continue to improve oncologic outcomes. We hypothesized that adjuvant radiation therapy does not significantly impact QOL domains in breast cancer patients undergoing chemotherapy. METHODS: Data was drawn from three prospective studies in women with localized breast cancer being treated with chemotherapy from March 2014 to December 2019. Patient-reported measures were collected at baseline (pretreatment) and post-treatment using the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) measure, which consists of 5 subscales. Changes in mean QOL scores in patients who received radiotherapy were compared to those who did not using a one-sided noninferiority method. Statistical significance was determined below 0.05 to meet noninferiority. RESULTS: In a sample of 175 patients, 131 were treated with radiation and 44 had no radiation. The sample consisted mostly of stage I-II breast cancer (78%) with hormone receptor positive (59%) disease, receiving either neoadjuvant (36%) or adjuvant chemotherapy (64%). Mean change in QOL for the group treated with radiation compared to no radiation was noninferior with respect to Physical Well-Being (P = .0027), Social/Family Well-Being (P = .0002), Emotional Well-Being (P = .0203), FACIT-Fatigue Subscale (P = .0072), and the Total FACIT-F score (P = .0005); however, mean change in QOL did not meet noninferiority for Functional Well-Being (P = .0594). CONCLUSION: Patient-reported QOL from baseline to post-treatment, using the Total FACIT-F score, was noninferior in patients treated with versus without radiation therapy. This finding, in addition to individualized QOL subscales, provides important information in the informed decision-making process when discussing the effects of locoregional radiation on QOL in localized breast cancer patients treated with chemotherapy.

19.
bioRxiv ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39411165

RESUMEN

Myeloid malignancies carrying somatic DNMT3A mutations (DNMT3Amut) are usually resistant to standard therapy. DNMT3Amut leukemia cells accumulate toxic DNA double strand breaks (DSBs) and collapsed replication forks, rendering them dependent on DNA damage response (DDR). DNA polymerase theta (Polθ), a key element in Polθ-mediated DNA end-joining (TMEJ), is essential for survival and proliferation of DNMT3Amut leukemia cells. Polθ is overexpressed in DNMT3Amut leukemia cells due to abrogation of PARP1 PARylation-dependent UBE2O E3 ligase-mediated ubiquitination and proteasomal degradation of Polθ. In addition, PARP1-mediated recruitment of the SMARCAD1-MSH2/MSH3 repressive complex to DSBs was diminished in DNMT3Amut leukemia cells which facilitated loading of Polθ on DNA damage and promoting TMEJ and replication fork restart. Polθ inhibitors enhanced the anti-leukemic effects of mainstream drugs such as FLT3 kinase inhibitor quizartinib, cytarabine and etoposide in vitro and in mice with FLT3(ITD);DNMT3Amut leukemia. Altogether, Polθ is an attractive target in DNMT3Amut hematological malignancies.

20.
Nature ; 446(7137): 765-70, 2007 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-17429393

RESUMEN

Metastasis entails numerous biological functions that collectively enable cancerous cells from a primary site to disseminate and overtake distant organs. Using genetic and pharmacological approaches, we show that the epidermal growth factor receptor ligand epiregulin, the cyclooxygenase COX2, and the matrix metalloproteinases 1 and 2, when expressed in human breast cancer cells, collectively facilitate the assembly of new tumour blood vessels, the release of tumour cells into the circulation, and the breaching of lung capillaries by circulating tumour cells to seed pulmonary metastasis. These findings reveal how aggressive primary tumorigenic functions can be mechanistically coupled to greater lung metastatic potential, and how such biological activities may be therapeutically targeted with specific drug combinations.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/secundario , Neovascularización Patológica , Animales , Neoplasias de la Mama/irrigación sanguínea , Capilares/crecimiento & desarrollo , Línea Celular Tumoral , Ciclooxigenasa 2/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Epirregulina , Femenino , Humanos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA