Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Chembiochem ; 23(23): e202200333, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-35980391

RESUMEN

Spurred in part by the failure of recent therapeutics targeting amyloid ß plaques in Alzheimer's Disease (AD), attention is increasingly turning to the oligomeric forms of this peptide that form early in the aggregation process. However, while numerous amyloid ß fibril structures have been characterized, primarily by NMR spectroscopy and cryo-EM, obtaining structural information on the low molecular weight forms of amyloid ß that presumably precede and/or seed fibril formation has proved challenging. These transient forms are heterogeneous, and depend heavily on experimental conditions such as buffer, temperature, concentration, and degree of quiescence during measurement. Here, we present the concept for a new approach to delineating structural features of early-stage low molecular weight amyloid ß oligomers, using a solvent accessibility assay in conjunction with simultaneous fluorescence measurements.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/química , Peso Molecular , Amiloide/química , Espectroscopía de Resonancia Magnética , Fragmentos de Péptidos/química
2.
Chaos ; 32(9): 093148, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36182383

RESUMEN

The phenomenon of mirroring of synchronization is investigated in dynamically dissimilar, unidirectionally coupled, bi-layer master-slave configuration of globally coupled Kuramoto oscillators. The dynamics of the master layer depends solely on the distribution of the natural frequencies of its oscillators. On the other hand, the slave layer dynamics depends not only on the distribution of the natural frequencies of its oscillators but also on the unidirectional coupling with the master layer. The standard Kuramoto order parameter is used to study synchronization in the individual layers and of the bi-layer network. A transition to a completely mirroring state is observed in the dynamics of the slave layer, as the mirroring coefficient in the unidirectional coupling is increased. We derive analytically and verify numerically the conditions for the slave layer to fully mimic the synchronization properties of the master layer. It is further shown that while the master and slave layers are individually synchronized, the bi-layer network exhibits a state of frustrated synchronization.

3.
J Synchrotron Radiat ; 28(Pt 5): 1333-1342, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475282

RESUMEN

In the method of X-ray footprinting mass spectrometry (XFMS), proteins at micromolar concentration in solution are irradiated with a broadband X-ray source, and the resulting hydroxyl radical modifications are characterized using liquid chromatography mass spectrometry to determine sites of solvent accessibility. These data are used to infer structural changes in proteins upon interaction with other proteins, folding, or ligand binding. XFMS is typically performed under aerobic conditions; dissolved molecular oxygen in solution is necessary in many, if not all, the hydroxyl radical modifications that are generally reported. In this study we investigated the result of X-ray induced modifications to three different proteins under aerobic versus low oxygen conditions, and correlated the extent of damage with dose calculations. We observed a concentration-dependent protecting effect at higher protein concentration for a given X-ray dose. For the typical doses used in XFMS experiments there was minimal X-ray induced aggregation and fragmentation, but for higher doses we observed formation of covalent higher molecular weight oligomers, as well as fragmentation, which was affected by the amount of dissolved oxygen in solution. The higher molecular weight products in the form of dimers, trimers, and tetramers were present in all sample preparations, and, upon X-ray irradiation, these oligomers became non-reducible as seen in SDS-PAGE. The results provide an important contribution to the large body of X-ray radiation damage literature in structural biology research, and will specifically help inform the future planning of XFMS, and well as X-ray crystallography and small-angle X-ray scattering experiments.


Asunto(s)
Radical Hidroxilo/química , Espectrometría de Masas/métodos , Huella de Proteína/métodos , Proteínas/química , Proteínas/efectos de la radiación , Oxígeno , Conformación Proteica , Soluciones/química , Sincrotrones , Rayos X
4.
Chaos ; 31(1): 013126, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33754746

RESUMEN

This paper approaches the problem of analyzing the bifurcation phenomena in three-dimensional discontinuous maps, using a piecewise linear approximation in the neighborhood of a border. The existence conditions of periodic orbits are analytically calculated and bifurcations of different periodic orbits are illustrated through numerical simulations. We have illustrated the peculiar features of discontinuous bifurcations involving a stable fixed point, a period-2 cycle, a saddle fixed point, etc. The occurrence of multiple attractor bifurcation and hyperchaos are also demonstrated.

5.
Biophys J ; 119(6): 1108-1122, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32891187

RESUMEN

Phosphorylation of Escherichia coli CheY protein transduces chemoreceptor stimulation to a highly cooperative flagellar motor response. CheY binds to the N-terminal peptide of the FliM motor protein (FliMN). Constitutively active D13K-Y106W CheY has been an important tool for motor physiology. The crystal structures of CheY and CheY ⋅ FliMN with and without D13K-Y106W have shown FliMN-bound CheY contains features of both active and inactive states. We used molecular dynamics (MD) simulations to characterize the CheY conformational landscape accessed by FliMN and D13K-Y106W. Mutual information measures identified the central features of the long-range CheY allosteric network between D57 phosphorylation site and the FliMN interface, namely the closure of the α4-ß4 hinge and inward rotation of Y- or W106 with W58. We used hydroxy-radical foot printing with mass spectroscopy (XFMS) to track the solvent accessibility of these and other side chains. The solution XFMS oxidation rate correlated with the solvent-accessible area of the crystal structures. The protection of allosteric relay side chains reported by XFMS confirmed the intermediate conformation of the native CheY ⋅ FliMN complex, the inactive state of free D13K-Y106W CheY, and the MD-based network architecture. We extended the MD analysis to determine temporal coupling and energetics during activation. Coupled aromatic residue rotation was a graded rather than a binary switch, with Y- or W106 side-chain burial correlated with increased FliMN affinity. Activation entrained CheY fold stabilization to FliMN affinity. The CheY network could be partitioned into four dynamically coordinated sectors. Residue substitutions mapped to sectors around D57 or the FliMN interface according to phenotype. FliMN increased sector size and interactions. These sectors fused between the substituted K13-W106 residues to organize a tightly packed core and novel surfaces that may bind additional sites to explain the cooperative motor response. The community maps provide a more complete description of CheY priming than proposed thus far.


Asunto(s)
Proteínas Bacterianas , Escherichia coli , Proteínas Bacterianas/metabolismo , Quimiotaxis , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Flagelos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo , Fosforilación , Unión Proteica
6.
J Biol Chem ; 294(36): 13327-13335, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31320477

RESUMEN

Regulated ion diffusion across biological membranes is vital for cell function. In a nanoscale ion channel, the active role of discrete water molecules in modulating hydrodynamic behaviors of individual ions is poorly understood because of the technical challenge of tracking water molecules through the channel. Here we report the results of a hydroxyl radical footprinting analysis of the zinc-selective channel ZIPB from the Gram-negative bacterium, Bordetella bronchiseptica Irradiating ZIPB by microsecond X-ray pulses activated water molecules to form covalent hydroxyl radical adducts at nearby residues, which were identified by bottom-up proteomics to detect residues that interact either with zinc or water in response to zinc binding. We found a series of residues exhibiting reciprocal changes in water accessibility attributed to alternating zinc and water binding. Mapping these residues to the previously reported crystal structure of ZIPB, we identified a water-reactive pathway that superimposed on a zinc translocation pathway consisting of two binuclear metal centers and an interim zinc-binding site. The cotranslocation of zinc and water suggested that pore-lining residues undergo a mode switch between zinc coordination and water binding to confer zinc mobility. The unprecedented details of water-mediated zinc transport identified here highlight an essential role of solvated waters in driving zinc coordination dynamics and transmembrane crossing.


Asunto(s)
Bordetella bronchiseptica/metabolismo , Proteínas de Transporte de Catión/metabolismo , Agua/metabolismo , Zinc/metabolismo , Transporte Biológico , Bordetella bronchiseptica/química , Proteínas de Transporte de Catión/química , Difusión , Agua/química , Zinc/química
7.
J Biol Chem ; 294(22): 8848-8860, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30979724

RESUMEN

In cyanobacterial photoprotection, the orange carotenoid protein (OCP) is photoactivated under excess light conditions and binds to the light-harvesting antenna, triggering the dissipation of captured light energy. In low light, the OCP relaxes to the native state, a process that is accelerated in the presence of fluorescence recovery protein (FRP). Despite the importance of the OCP in photoprotection, the precise mechanism of photoactivation by this protein is not well-understood. Using time-resolved X-ray-mediated in situ hydroxyl radical labeling, we probed real-time solvent accessibility (SA) changes at key OCP residues during photoactivation and relaxation. We observed a biphasic photoactivation process in which carotenoid migration preceded domain dissociation. We also observed a multiphasic relaxation process, with collapsed domain association preceding the final conformational rearrangement of the carotenoid. Using steady-state hydroxyl radical labeling, we identified sites of interaction between the FRP and OCP. In combination, the findings in this study provide molecular-level insights into the factors driving structural changes during OCP-mediated photoprotection in cyanobacteria, and furnish a basis for understanding the physiological relevance of the FRP-mediated relaxation process.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carotenoides/metabolismo , Proteínas Bacterianas/química , Carotenoides/química , Cianobacterias/metabolismo , Radical Hidroxilo/química , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Rayos X
8.
Anal Chem ; 92(1): 1565-1573, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31790200

RESUMEN

The method of X-ray footprinting and mass spectrometry (XFMS) on large protein assemblies and membrane protein samples requires high flux density to overcome the hydroxyl radical scavenging reactions produced by the buffer constituents and the total protein content. Previously, we successfully developed microsecond XFMS using microfluidic capillary flow and a microfocused broadband X-ray source at the Advanced Light Source synchrotron beamlines, but the excessive radiation damage incurred when using capillaries prevented the full usage of a high-flux density beam. Here we present another significant advance for the XFMS method: the instrumentation of a liquid injection jet to deliver container free samples to the X-ray beam. Our preliminary experiments with a liquid jet at a bending magnet X-ray beamline demonstrate the feasibility of the approach and show a significant improvement in the effective dose for both the Alexa fluorescence assay and protein samples compared to conventional capillary flow methods. The combination of precisely controlled high dose delivery, shorter exposure times, and elimination of radiation damage due to capillary effects significantly increases the signal quality of the hydroxyl radical modification products and the dose-response data. This new approach is the first application of container free sample handling for XFMS and opens up the method for even further advances, such as high-quality microsecond time-resolved XFMS studies.


Asunto(s)
Radical Hidroxilo/análisis , Proteínas de la Membrana/análisis , Huella de Proteína , Sincrotrones , Colorantes Fluorescentes/química , Rayos X
9.
Plant Physiol ; 179(1): 156-167, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30389783

RESUMEN

Bacterial microcompartments (BMCs) encapsulate enzymes within a selectively permeable, proteinaceous shell. Carboxysomes are BMCs containing ribulose-1,5-bisphosphate carboxylase oxygenase and carbonic anhydrase that enhance carbon dioxide fixation. The carboxysome shell consists of three structurally characterized protein types, each named after the oligomer they form: BMC-H (hexamer), BMC-P (pentamer), and BMC-T (trimer). These three protein types form cyclic homooligomers with pores at the center of symmetry that enable metabolite transport across the shell. Carboxysome shells contain multiple BMC-H paralogs, each with distinctly conserved residues surrounding the pore, which are assumed to be associated with specific metabolites. We studied the regulation of ß-carboxysome shell composition by investigating the BMC-H genes ccmK3 and ccmK4 situated in a locus remote from other carboxysome genes. We made single and double deletion mutants of ccmK3 and ccmK4 in Synechococcus elongatus PCC7942 and show that, unlike CcmK3, CcmK4 is necessary for optimal growth. In contrast to other CcmK proteins, CcmK3 does not form homohexamers; instead CcmK3 forms heterohexamers with CcmK4 with a 1:2 stoichiometry. The CcmK3-CcmK4 heterohexamers form stacked dodecamers in a pH-dependent manner. Our results indicate that CcmK3-CcmK4 heterohexamers potentially expand the range of permeability properties of metabolite channels in carboxysome shells. Moreover, the observed facultative formation of dodecamers in solution suggests that carboxysome shell permeability may be dynamically attenuated by "capping" facet-embedded hexamers with a second hexamer. Because ß-carboxysomes are obligately expressed, heterohexamer formation and capping could provide a rapid and reversible means to alter metabolite flux across the shell in response to environmental/growth conditions.


Asunto(s)
Proteínas Bacterianas/fisiología , Synechococcus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Eliminación de Gen , Modelos Moleculares , Simulación de Dinámica Molecular , Permeabilidad , Synechococcus/genética
10.
Nature ; 512(7512): 101-4, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25043033

RESUMEN

The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of Escherichia coli. Its transport site receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(II) efflux. This membrane protein is a well-characterized member of the family of cation diffusion facilitators that occurs at all phylogenetic levels. Here we show, using X-ray-mediated hydroxyl radical labelling of YiiP and mass spectrometry, that Zn(II) binding triggers a highly localized, all-or-nothing change of water accessibility to the transport site and an adjacent hydrophobic gate. Millisecond time-resolved dynamics reveal a concerted and reciprocal pattern of accessibility changes along a transmembrane helix, suggesting a rigid-body helical re-orientation linked to Zn(II) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport site enables a stationary proton gradient to facilitate the conversion of zinc-binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights into a proton-coupled active-transport reaction.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Protones , Zinc/metabolismo , Sitios de Unión , Transporte Biológico Activo , Interacciones Hidrofóbicas e Hidrofílicas , Radical Hidroxilo , Transporte Iónico , Cinética , Espectrometría de Masas , Modelos Moleculares , Unión Proteica , Conformación Proteica , Radiólisis de Impulso , Agua/metabolismo , Rayos X
11.
Proc Natl Acad Sci U S A ; 112(41): E5567-74, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26385969

RESUMEN

Photoprotective mechanisms are of fundamental importance for the survival of photosynthetic organisms. In cyanobacteria, the orange carotenoid protein (OCP), when activated by intense blue light, binds to the light-harvesting antenna and triggers the dissipation of excess captured light energy. Using a combination of small angle X-ray scattering (SAXS), X-ray hydroxyl radical footprinting, circular dichroism, and H/D exchange mass spectrometry, we identified both the local and global structural changes in the OCP upon photoactivation. SAXS and H/D exchange data showed that global tertiary structural changes, including complete domain dissociation, occur upon photoactivation, but with alteration of secondary structure confined to only the N terminus of the OCP. Microsecond radiolytic labeling identified rearrangement of the H-bonding network associated with conserved residues and structural water molecules. Collectively, these data provide experimental evidence for an ensemble of local and global structural changes, upon activation of the OCP, that are essential for photoprotection.


Asunto(s)
Proteínas Bacterianas/química , Modelos Moleculares , Synechocystis/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
12.
J Am Chem Soc ; 139(36): 12647-12654, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28806874

RESUMEN

Achieving fast electron transfer between a material and protein is a long-standing challenge confronting applications in bioelectronics, bioelectrocatalysis, and optobioelectronics. Interestingly, naturally occurring extracellular electron transfer proteins bind to and reduce metal oxides fast enough to enable cell growth, and thus could offer insight into solving this coupling problem. While structures of several extracellular electron transfer proteins are known, an understanding of how these proteins bind to their metal oxide substrates has remained elusive because this abiotic-biotic interface is inaccessible to traditional structural methods. Here, we use advanced footprinting techniques to investigate binding between the Shewanella oneidensis MR-1 extracellular electron transfer protein MtrF and one of its substrates, α-Fe2O3 nanoparticles, at the molecular level. We find that MtrF binds α-Fe2O3 specifically, but not tightly. Nanoparticle binding does not induce significant conformational changes in MtrF, but instead protects specific residues on the face of MtrF likely to be involved in electron transfer. Surprisingly, these residues are separated in primary sequence, but cluster into a small 3D putative binding site. This binding site is located near a local pocket of positive charge that is complementary to the negatively charged α-Fe2O3 surface, and mutational analysis indicates that electrostatic interactions in this 3D pocket modulate MtrF-nanoparticle binding. Strikingly, these results show that binding of MtrF to α-Fe2O3 follows a strategy to connect proteins to materials that resembles the binding between donor-acceptor electron transfer proteins. Thus, by developing a new methodology to probe protein-nanoparticle binding at the molecular level, this work reveals one of nature's strategies for achieving fast, efficient electron transfer between proteins and materials.

13.
Methods ; 103: 49-56, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27016143

RESUMEN

The assembly of the Escherichia coli ribosome has been widely studied and characterized in vitro. Despite this, ribosome biogenesis in living cells is only partly understood because assembly is coupled with transcription, modification and processing of the pre-ribosomal RNA. We present a method for footprinting and isolating pre-rRNA as it is synthesized in E. coli cells. Pre-rRNA synthesis is synchronized by starvation, followed by nutrient upshift. RNA synthesized during outgrowth is metabolically labeled to facilitate isolation of recent transcripts. Combining this technique with two in vivo RNA probing methods, hydroxyl radical and DMS footprinting, allows the structure of nascent RNA to be probed over time. Together, these can be used to determine changes in the structures of ribosome assembly intermediates as they fold in vivo.


Asunto(s)
Radical Hidroxilo/química , ARN Bacteriano/ultraestructura , ARN Ribosómico/ultraestructura , Ribosomas/ultraestructura , Ésteres del Ácido Sulfúrico/química , Técnicas de Cultivo de Célula , Escherichia coli , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Ribosómico/química , Ribosomas/química , Coloración y Etiquetado
14.
J Synchrotron Radiat ; 23(Pt 5): 1056-69, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27577756

RESUMEN

The vast majority of biomolecular processes are controlled or facilitated by water interactions. In enzymes, regulatory proteins, membrane-bound receptors and ion-channels, water bound to functionally important residues creates hydrogen-bonding networks that underlie the mechanism of action of the macromolecule. High-resolution X-ray structures are often difficult to obtain with many of these classes of proteins because sample conditions, such as the necessity of detergents, often impede crystallization. Other biophysical techniques such as neutron scattering, nuclear magnetic resonance and Fourier transform infrared spectroscopy are useful for studying internal water, though each has its own advantages and drawbacks, and often a hybrid approach is required to address important biological problems associated with protein-water interactions. One major area requiring more investigation is the study of bound water molecules which reside in cavities and channels and which are often involved in both the structural and functional aspects of receptor, transporter and ion channel proteins. In recent years, significant progress has been made in synchrotron-based radiolytic labeling and mass spectroscopy techniques for both the identification of bound waters and for characterizing the role of water in protein conformational changes at a high degree of spatial and temporal resolution. Here the latest developments and future capabilities of this method for investigating water-protein interactions and its synergy with other synchrotron-based methods are discussed.


Asunto(s)
Proteínas/análisis , Espectrometría de Masas , Conformación Proteica , Radiografía , Sincrotrones , Agua , Rayos X
15.
J Biol Chem ; 289(21): 14896-912, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24727473

RESUMEN

The interaction of chemokines with glycosaminoglycans (GAGs) facilitates the formation of localized chemokine gradients that provide directional signals for migrating cells. In this study, we set out to understand the structural basis and impact of the differing oligomerization propensities of the chemokines monocyte chemoattractant protein (MCP)-1/CCL2 and MCP-3/CCL7 on their ability to bind GAGs. These chemokines provide a unique comparison set because CCL2 oligomerizes and oligomerization is required for its full in vivo activity, whereas CCL7 functions as a monomer. To identify the GAG-binding determinants of CCL7, an unbiased hydroxyl radical footprinting approach was employed, followed by a focused mutagenesis study. Compared with the size of the previously defined GAG-binding epitope of CCL2, CCL7 has a larger binding site, consisting of multiple epitopes distributed along its surface. Furthermore, surface plasmon resonance (SPR) studies indicate that CCL7 is able to bind GAGs with an affinity similar to CCL2 but higher than the non-oligomerizing variant, CCL2(P8A), suggesting that, in contrast to CCL2, the large cluster of GAG-binding residues in CCL7 renders oligomerization unnecessary for high affinity binding. However, the affinity of CCL7 is more sensitive than CCL2 to the density of heparan sulfate on the SPR surfaces; this is likely due to the inability of CCL7 to oligomerize because CCL2(P8A) also binds significantly less tightly to low than high density heparan sulfate surfaces compared with CCL2. Together, the data suggest that CCL7 and CCL2 are non-redundant chemokines and that GAG chain density may provide a mechanism for regulating the accumulation of chemokines on cell surfaces.


Asunto(s)
Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Epítopos/metabolismo , Glicosaminoglicanos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Línea Celular , Quimiocina CCL2/química , Quimiocina CCL2/genética , Quimiocina CCL7/química , Quimiocina CCL7/genética , Electroforesis en Gel de Poliacrilamida , Epítopos/genética , Humanos , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie
16.
Biochem Soc Trans ; 43(5): 983-94, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26517913

RESUMEN

Membrane proteins, such as receptors, transporters and ion channels, control the vast majority of cellular signalling and metabolite exchange processes and thus are becoming key pharmacological targets. Obtaining structural information by usage of traditional structural biology techniques is limited by the requirements for the protein samples to be highly pure and stable when handled in high concentrations and in non-native buffer systems, which is often difficult to achieve for membrane targets. Hence, there is a growing requirement for the use of hybrid, integrative approaches to study the dynamic and functional aspects of membrane proteins in physiologically relevant conditions. In recent years, significant progress has been made in the field of oxidative labelling techniques and in particular the X-ray radiolytic footprinting in combination with mass spectrometry (MS) (XF-MS), which provide residue-specific information on the solvent accessibility of proteins. In combination with both low- and high-resolution data from other structural biology approaches, it is capable of providing valuable insights into dynamics of membrane proteins, which have been difficult to obtain by other structural techniques, proving a highly complementary technique to address structure and function of membrane targets. XF-MS has demonstrated a unique capability for identification of structural waters and conformational changes in proteins at both a high degree of spatial and a high degree of temporal resolution. Here, we provide a perspective on the place of XF-MS among other structural biology methods and showcase some of the latest developments in its usage for studying water-mediated transmembrane (TM) signalling, ion transport and ligand-induced allosteric conformational changes in membrane proteins.


Asunto(s)
Espectrometría de Masas/métodos , Proteínas de la Membrana/química , Huella de Proteína/métodos , Estructura Terciaria de Proteína , Animales , Cristalografía por Rayos X , Humanos , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Oxidación-Reducción , Unión Proteica
17.
Bioorg Chem ; 59: 97-105, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25727264

RESUMEN

Hsp90 is a molecular chaperone that heals diverse array of biomolecules ranging from multiple oncogenic proteins to the ones responsible for development of resistance to chemotherapeutic agents. Moreover they are over-expressed in cancer cells as a complex with co-chaperones and under-expressed in normal cells as a single free entity. Hence inhibitors of Hsp90 will be more effective and selective in destroying cancer cells with minimum chances of acquiring resistance to them. In continuation of our goal to rationally develop effective small molecule azomethines against Hsp90, we designed few more compounds belonging to the class of 2,4-dihydroxy benzaldehyde derived imines (1-13) with our validated docking protocol. The molecules exhibiting good docking score were synthesized and their structures were confirmed by IR, (1)H NMR and mass spectral analysis. Subsequently, they were evaluated for their potential to suppress Hsp90 ATPase activity by Malachite green assay. The antiproliferative effect of the molecules were examined on PC3 prostate cancer cell lines by adopting 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay methodology. Finally, schiff base 13 emerged as the lead molecule for future design and development of Hsp90 inhibitors as anticancer agents.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Benzaldehídos/química , Benzaldehídos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Bases de Schiff/química , Bases de Schiff/farmacología , Línea Celular Tumoral , Diseño de Fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Masculino , Modelos Moleculares , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
18.
Mol Cell Proteomics ; 12(5): 1259-71, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23378516

RESUMEN

Hybrid structural methods have been used in recent years to understand protein-protein or protein-ligand interactions where high resolution crystallography or NMR data on the protein of interest has been limited. For G protein-coupled receptors (GPCRs), high resolution structures of native structural forms other than rhodopsin have not yet been achieved; gaps in our knowledge have been filled by creative crystallography studies that have developed stable forms of receptors by multiple means. The neurotransmitter serotonin (5-hydroxytryptamine) is a key GPCR-based signaling molecule affecting many physiological manifestations in humans ranging from mood and anxiety to bowel function. However, a high resolution structure of any of the serotonin receptors has not yet been solved. Here, we used structural mass spectrometry along with theoretical computations, modeling, and other biochemical methods to develop a structured model for human serotonin receptor subtype 4(b) in the presence and absence of its antagonist GR125487. Our data confirmed the overall structure predicted by the model and revealed a highly conserved motif in the ligand-binding pocket of serotonin receptors as an important participant in ligand binding. In addition, identification of waters in the transmembrane region provided clues as to likely paths mediating intramolecular signaling. Overall, this study reveals the potential of hybrid structural methods, including mass spectrometry, to probe physiological and functional GPCR-ligand interactions with purified native protein.


Asunto(s)
Receptores de Serotonina 5-HT4/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Humanos , Ligandos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Huella de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Células Sf9 , Spodoptera
19.
Proc Natl Acad Sci U S A ; 109(37): 14882-7, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22927377

RESUMEN

Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H(2)(18)O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein-water interactions and water dynamics for both small and large proteins and their complexes.


Asunto(s)
Modelos Moleculares , Proteínas/química , Agua/química , Cristalografía por Rayos X , Citocromos c/química , Espectrometría de Masas , Isótopos de Oxígeno/química , Radiólisis de Impulso , Sincrotrones , Ubiquitina/química
20.
J Synchrotron Radiat ; 21(Pt 1): 24-31, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24365913

RESUMEN

Synchrotron footprinting is a valuable technique in structural biology for understanding macromolecular solution-state structure and dynamics of proteins and nucleic acids. Although an extremely powerful tool, there is currently only a single facility in the USA, the X28C beamline at the National Synchrotron Light Source (NSLS), dedicated to providing infrastructure, technology development and support for these studies. The high flux density of the focused white beam and variety of specialized exposure environments available at X28C enables footprinting of highly complex biological systems; however, it is likely that a significant fraction of interesting experiments could be performed at unspecialized facilities. In an effort to investigate the viability of a beamline-flexible footprinting program, a standard sample was taken on tour around the nation to be exposed at several US synchrotrons. This work describes how a relatively simple and transportable apparatus can allow beamlines at the NSLS, CHESS, APS and ALS to be used for synchrotron footprinting in a general user mode that can provide useful results.


Asunto(s)
Citocromos c/química , Ácidos Nucleicos/química , Sincrotrones , Rayos X , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA