Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Monit Assess ; 195(1): 139, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36416991

RESUMEN

The success of a species in future climate change scenarios depends on its morphological, physiological, and demographic adaptive responses to changing climate. The existence of threatened species against climate adversaries is constrained due to their small population size, narrow genetic base, and narrow niche breadth. We examined if ecological niche model (ENM)-based distribution predictions of species align with their morpho-physiological and demographic responses to future climate change scenarios. We studied three threatened Ilex species, viz., Ilex khasiana Purkay., I. venulosa Hook. f., and I. embelioides Hook. F, with restricted distribution in Indo-Burma biodiversity hotspot. Demographic analysis of the natural populations of each species in Meghalaya, India revealed an upright pyramid suggesting a stable population under the present climate scenario. I. khasiana was confined to higher elevations only while I. venulosa and I. embelioides had wider altitudinal distribution ranges. The bio-climatic niche of I. khasiana was narrow, while the other two species had relatively broader niches. The ENM-predicted potential distribution areas under the current (2022) and future (2050) climatic scenarios (General Circulation Models (GCMs): IPSL-CM5A-LR and NIMR-HADGEM2-AO) revealed that the distribution of highly suitable areas for the most climate-sensitive I. khasiana got drastically reduced. In I. venulosa and I. embelioides, there was an increase in highly suitable areas under the future scenarios. The eco-physiological studies showed marked variation among the species, sites, and treatments (p < 0.05), indicating the differential responses of the three species to varied climate scenarios, but followed a similar trend in species performance aligning with the model predictions.


Asunto(s)
Mariposas Diurnas , Ilex , Animales , Especies en Peligro de Extinción , Monitoreo del Ambiente , Cambio Climático , Dinámica Poblacional
2.
Mol Neurobiol ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073529

RESUMEN

Parkinson's disease (PD), an age-associated neurodegenerative motor disorder, is associated with dementia and cognitive decline. However, the precise molecular insight into PD-induced cognitive decline is not fully understood. Here, we have investigated the possible alterations in the expression of glutamate receptor and its trafficking/scaffolding/regulatory proteins underlying the memory formation and neuroprotective effects of a specialized Bacopa monnieri extract, CDRI-08 (BME) in the hippocampus of the rotenone-induced PD mouse model. Our Western blotting and qRT-PCR data reveal that the PD-induced recognition memory decline is associated with significant upregulation of the AMPA receptor subunit GluR1 and downregulation of GluR2 subunit genes in the hippocampus of rotenone-affected mice as compared to the vehicle control. Further, expressions of the trafficking proteins are significantly upregulated in the hippocampus of rotenone-affected mice compared to the vehicle control. Our results also reveal that the above alterations in the hippocampus are associated with similar expression patterns of total CREB, pCREB, and BDNF. BME (CDRI-08, 200 mg/kg BW) reverses the expression of AMPA receptor subunits, their trafficking proteins differentially, and the transcriptional modulatory proteins depending on whether the BME treatment was given before or after the rotenone treatment. Our data suggest that expression of the above genes is significantly reversed in the BME pre-treated mice subjected to rotenone treatment towards their levels in the control mice compared to its treatment after rotenone administration. Our results provide the possible molecular basis underlying the rotenone-induced recognition memory decline, conditions mimicking the PD symptoms in mouse model and neuroprotective action of bacoside A and bacoside B (58%)-enriched Bacopa monnieri extract (BME) in the hippocampus.

3.
Heliyon ; 10(2): e24193, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293403

RESUMEN

Malnutrition and hunger is a serious global issue, however, wild fruits possess the potential of combatting it being rich in nutrients. Stereospermum chelonoides (L.f.) DC., commonly known as "Patala" in Ayurvedic text, is a large wild tree bearing edible, yet, underutilized fruits consumed by the locals in Western parts of India and neighboring countries. The present study focuses on the nutritional profile of S. chelonoides fruit along with quantification of bioactive constituents using RP-HPLC-PDA and evaluation of in-vitro anti-oxidant and, anti-microbial activity. The fruit was found rich in nutritional composition having protein (2.41 % ± 0.007), fibre (3.46 % ± 0.02) and carbohydrate (90.19 % ± 1.73) with energy value of 368.2 ± 3.94 Kcal/100g. The elemental analysis of fruit resulted in macronutrients Ca, Mg and Na and micronutrients Fe, Mn, Zn, and Cu in amounts comparable to common marketed fruits. The RP-HPLC-PDA analysis revealed the presence of six phenolic compounds in all 3 extracts made from the fruit in which highest amount are present in hydro-alcoholic extract. All the extracts exhibited potent antioxidant activity evaluated through DPPH assay and oxygen radical absorbing capacity (ORAC), with highest activity in hydro-alcoholic extract. All the analyzed extracts also exhibited potent inhibition, against four human pathogens namely Pseudomonas aeruginosa, Vibrio cholerae, Escherichia coli, and Shigella flexneri. Therefore, it is evident from the study that the fruit of S. chelonoides has immense potential as a nutraceutical supplement and may help in the management of nutrient deficiency and malnutrition among rural and tribal communities.

4.
J Ethnopharmacol ; 306: 116123, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36634724

RESUMEN

ETHNO PHARMACOLOGICAL RELEVANCE: Eulophia nuda, locally known as "Amarkand" is an edible orchid, traditionally used as food and ethnomedicine in arthritis, as a blood purifier, vermifuge, in bronchitis, scrofulous glands etc. AIM: The present study focuses on the proximate-nutrient analysis, metabolic profiling of bioactive phenolic acids (PA's) and validation of anti-arthritic activity in E. nuda. MATERIALS: The proximate, nutrition and element (macro-micro) content were evaluated as per standard protocols. The anti-arthritic activity was evaluated via different Invitro models and bioactive phenolics were quantified through calibrated HPLC-UV (PDA) method, as per ICH guidelines. RESULTS: The species contains a considerable amount of proximate i.e. ash, fiber, crude alkaloid, total phenolics, and flavonoid. It is a rich source of macro-micro nutrients, carbohydrates and energy, at par with conventional cereals and super-foods like finger millet, foxtail millet etc. It also contains seven PA's viz. gallic acid, protocatechuic acid, caffeic acid, syringic acid, vanillin acid, ferulic acid and quercetin. The PA's content varies from 4.00 to 83.50 µg/ml. The anti-arthritic potential of the plant extract based on several in-vitro-models showed a promising inhibitory effect on inflammation and uric acid synthesis. CONCLUSION: The study scientifically validates the traditional claims of this traditional orchid as food and ethnomedicine. The species can be commercially explored as a supplement to combat nutritional deficiency among rural communities.


Asunto(s)
Antioxidantes , Extractos Vegetales , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Fenoles/farmacología , Flavonoides/farmacología , Suplementos Dietéticos/análisis
5.
Environ Pollut ; 320: 120975, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584855

RESUMEN

The study aimed to explicate the role of microbial co-inoculants for the mitigation of arsenic (As) toxicity in rice. Arsenate (AsV) reducer yeast Debaryomyces hansenii NBRI-Sh2.11 (Sh2.11) with bacterial strains of different biotransformation potential was attempted to develop microbial co-inoculants. An experiment to test their efficacy (yeast and bacterial strains) on plant growth and As uptake was conducted under a stressed condition of 20 mg kg-1 of arsenite (AsIII). A combination of Sh2.11 with an As(III)-oxidizer, Citrobacter sp. NBRI-B5.12 (B5.12), resulted in ∼90% decrease in grain As content as compared to Sh2.11 alone (∼40%). Reduced As accumulation in rice roots under co-treated condition was validated with SEM-EDS analysis. Enhanced As expulsion in the selected combination under in vitro conditions was found to be correlated with higher As content in the soil during their interaction with plants. Selected co-inoculant mediated enhanced nutrient uptake in association with better production of indole acetic acid (IAA) and gibberellic acid (GA) in shoot, support microbial co-inoculant mediated better biomass under stressful condition. Boosted defense response in association with enhanced glutathione-S-transferase (GST) and glutathione reductase (GR), activities under in vitro and in vivo conditions were observed. These results indicated that the As(III) oxidizer-B5.12 accelerated the As detoxification property of the As(V) reducer-Sh2.11. Henceforth, the results confer that the coupled reduction-oxidation process of the co-inoculant reduces the accumulation of As in rice grain. These co-inoculants can be further developed for field trials to achieve higher biomass with alleviated As toxicity in rice.


Asunto(s)
Inoculantes Agrícolas , Arsénico , Arsenitos , Oryza , Contaminantes del Suelo , Arseniatos/toxicidad , Arseniatos/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Saccharomyces cerevisiae , Oryza/metabolismo , Arsenitos/toxicidad , Arsenitos/metabolismo , Bacterias/metabolismo , Oxidación-Reducción , Inoculantes Agrícolas/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis
6.
Biol Trace Elem Res ; 200(11): 4582-4593, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35028866

RESUMEN

Change in the levels of trace elements has been linked with PCOS pathogenesis by various studies, whereas some had reported no such association. Therefore, in order to evaluate association of eleven trace element (Cu, Zn, Cr, Cd, Se, Mn, Fe, Mg, Co, Ni and Pb) serum concentration with PCOS pathogenesis, current systematic review and meta-analysis has been carried out. Literature search was conducted using PubMed, Central Cochrane Library, Google Scholar and Science Direct databases with appropriate keywords. Studies published upto 3rd of September were evaluated for eligibility with suitable inclusion and exclusion criteria. Only case-control studies examining the association of serum trace element concentrations between PCOS cases and controls were selected. Present meta-analysis identified 32 articles with 2317 PCOS and 1898 controls. The serum Cu (MD = 15.40; 95% CI = 4.32 to 26.48; p = 0.006), Co (MD = 0.01; 95% CI = 0.01 to 0.02; p = 0.000), Cr (MD = 0.04; 95% CI = 0.00 to 0.07; p = 0.03) and Fe (MD = 12.98; 95% CI = 5.87-20.09; p = 0.0003) concentration is significantly higher, while lower concentration has been observed for Se (MD = - 0.99; 95% CI = - 1.31 to - 0.67; p = 0.000) and Mg (MD = - 223.41; 95% CI = - 391.60 to - 55.23; p = 0.009) among women with PCOS in comparison with the healthy group. Concentration of other elements which were analysed is not significantly related to PCOS. In short, PCOS women has higher serum concentrations of Cu, Co, Cr and Fe and lower concentrations of Se and Mg. Studies with sub-population of obese, non-obese and with and without insulin resistance are important to understand the pathomechanism of these elements in the syndrome.


Asunto(s)
Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Oligoelementos , Cadmio , Femenino , Humanos , Plomo
7.
J Colloid Interface Sci ; 493: 228-240, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28103491

RESUMEN

Chemical activation is known to induce specific surface features of porosity and functionality which play a definite role in enhancing the adsorptive potential of the developed activated carbons. Different conditions of temperature, time, reagent type and impregnation ratio were applied on sawdust precursor and their effect on the physical, surface chemical features and finally on the adsorption potential of the developed activated carbons were analysed. Under activation conditions of 600°C, 1hr, 1:0.5 ratio, ZnCl2 impregnated carbon (CASD_ZnCl2) resulted in microporosity while KOH impregnation (CASD_KOH) yielded a carbon having a wider pore size distribution. The surface chemistry revealed similar functionalities. At same pH, temperature and adsorbate concentrations, CASD_KOH demonstrated better adsorption potential (1.06mmoles/g for Cd2+ and 1.61mmoles/g for Ni2+) in comparison to CASD_ZnCl2 (0.23mmoles/g and 0.33mmoles/g for Cd2+ and Ni2+ respectively). Other features were a short equilibrium time of 60mins and an adsorbent dose of 0.2g/L for the CASD_KOH in comparison to CASD_ZnCl2 (equilibrium time of 150min and dosage of 0.5g/L). The nature of interactions was physical for both adsorbents and pore diffusion mechanisms were operative. The results reveal the potentiality of chemical activation so as to achieve the best physico-chemical properties suited for energy efficient, economical and eco-friendly water treatment.


Asunto(s)
Carbono/química , Cloruros/química , Lignina/química , Metales Pesados/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Compuestos de Zinc/química , Adsorción , Difusión , Calor , Concentración de Iones de Hidrógeno , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA