Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nitric Oxide ; 75: 53-59, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29452248

RESUMEN

Hydrogen sulfide (H2S) is produced by the action of cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE) or 3-mercaptopyruvate sulfurtransferase (3-MST). 3-MST converts 3-mercaptopyruvate (MPT) to H2S and pyruvate. H2S is recognized as an endogenous gaseous mediator with multiple regulatory roles in mammalian cells and organisms. In the present study we demonstrate that MPT, the endogenous substrate of 3-MST, acts also as endogenous H2S donor. Colorimetric, amperometric and fluorescence based assays demonstrated that MPT releases H2S in vitro in an enzyme-independent manner. A functional study was performed on aortic rings harvested from C57BL/6 (WT) or 3-MST-knockout (3-MST-/-) mice with and without endothelium. MPT relaxed mouse aortic rings in endothelium-independent manner and at the same extent in both WT and 3-MST-/- mice. N5-(1-Iminoethyl)-l-ornithine dihydrochloride (L-NIO, an inhibitor of endothelial nitric oxide synthase) as well as 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ, a soluble guanylyl cyclase inhibitor) did not affect MPT relaxant action. Conversely, hemoglobin (as H2S scavenger), as well as glybenclamide (an ATP-dependent potassium channel blocker) markedly reduced MPT-induced relaxation. The functional data clearly confirmed a non enzymatic vascular effect of MPT. In conclusion, MPT acts also as an endogenous H2S donor and not only as 3-MST substrate. MPT could, thus, be further investigated as a means to increase H2S in conditions where H2S bioavailability is reduced such as hypertension, coronary artery disease, diabetes or urogenital tract disease.


Asunto(s)
Aorta/metabolismo , Cisteína/análogos & derivados , Sulfurtransferasas/metabolismo , Vasodilatadores/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , Cisteína/metabolismo , Cisteína/farmacología , Inhibidores Enzimáticos/farmacología , Sulfuro de Hidrógeno/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Ornitina/análogos & derivados , Ornitina/farmacología , Sulfurtransferasas/genética , Vasodilatadores/farmacología
3.
Pharmacol Res ; 124: 100-104, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28760490

RESUMEN

Erectile function is a widely accepted indicator of systemic endothelial activity since from a clinical standpoint erectile dysfunction (ED) often precedes cardiovascular events. Recently it has been described a potential role for ß3 adrenoceptor in cardiovascular diseases emphasizing a possible development of new drugs. ß3 adrenoceptor stimulation relaxes human corpus cavernosum (HCC) strips in cyclic guanosine monophosphate (cGMP)-dependent and endothelium/nitric oxide (NO)-independent manner. Hydrogen sulfide (H2S), along with NO, is another gaseous molecule involved in cardiovascular system and as a consequence also in penile erection. Cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE), the enzymes mainly responsible for H2S biosynthesis, are constitutively expressed in HCC. CSE rather than CBS is more abundant in human penile tissue. Herein we investigated the involvement of H2S pathway in ß3 adrenoceptor-induced relaxation in HCC and penile artery. Penile artery expresses both CSE and ß3 adrenoceptor. BRL37344, a ß3 selective agonist, relaxed HCC strips and penile artery rings and this effect was significantly reduced by CSE inhibition. Incubation of HCC and penile artery homogenate with BRL37344 significantly increased H2S production. This effect was significantly reduced by the inhibition of either CSE or ß3 adrenoceptor. Finally, the BRL37344-induced increase in cGMP was reduced by CSE inhibition in both tissues. Thus, BRL37344-induced relaxation in HCC and penile artery occurs in a H2S/cGMP-dependent manner. In conclusion, ß3/H2S/cGMP pathway can act as an alternative to NO. Since about 15% of patients do not respond to phosphodiesterase-5 inhibitors, ß3 agonists could represent a therapeutic alternative or a useful adjuvant therapy to treat these patients.


Asunto(s)
Arterias/fisiología , Pene/irrigación sanguínea , Pene/fisiología , Receptores Adrenérgicos beta 3/fisiología , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Arterias/efectos de los fármacos , GMP Cíclico/fisiología , Etanolaminas/farmacología , Humanos , Sulfuro de Hidrógeno/metabolismo , Masculino
4.
Front Pharmacol ; 11: 166, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194407

RESUMEN

Cardiovascular disease (CVD) is an important comorbidity in a number of chronic inflammatory diseases. However, evidence in highly prevalent respiratory disease such as asthma are still limited. Epidemiological and clinical data are not univocal in supporting the hypothesis that asthma and CVD are linked and the mechanisms of this relationship remain poorly defined. In this review, we explore the relationship between asthma and cardiovascular disease, with a specific focus on cytokine contribution to vascular dysfunction and atherosclerosis. This is important in the context of recent evidence linking broad inflammatory signaling to cardiovascular events. However inflammatory regulation in asthma is different to the one typically observed in atherosclerosis. We focus on the contribution of cytokine networks encompassing IL-4, IL-6, IL-9, IL-17A, IL-33 but also IFN-γ and TNF-α to vascular dysfunction in atherosclerosis. In doing so we highlight areas of unmet need and possible therapeutic implications.

5.
ACS Appl Mater Interfaces ; 12(34): 37943-37956, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32805983

RESUMEN

Macrophage inflammation and maturation into foam cells, following the engulfment of oxidized low-density lipoproteins (oxLDL), are major hallmarks in the onset and progression of atherosclerosis. Yet, chronic treatments with anti-inflammatory agents, such as methotrexate (MTX), failed to modulate disease progression, possibly for the limited drug bioavailability and plaque deposition. Here, MTX-lipid conjugates, based on 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), were integrated in the structure of spherical polymeric nanoparticles (MTX-SPNs) or intercalated in the lipid bilayer of liposomes (MTX-LIP). Although, both nanoparticles were colloidally stable with an average diameter of ∼200 nm, MTX-LIP exhibited a higher encapsulation efficiency (>70%) and slower release rate (∼50% at 10 h) compared to MTX-SPN. In primary bone marrow derived macrophages (BMDMs), MTX-LIP modulated the transcellular transport of oxLDL more efficiently than free MTX mostly by inducing a 2-fold overexpression of ABCA1 (regulating oxLDL efflux), while the effect on CD36 and SRA-1 (regulating oxLDL influx) was minimal. Furthermore, in BMDMs, MTX-LIP showed a stronger anti-inflammatory activity than free MTX, reducing the expression of IL-1ß by 3-fold, IL-6 by 2-fold, and also moderately of TNF-α. In 28 days high-fat-diet-fed apoE-/- mice, MTX-LIP reduced the mean plaque area by 2-fold and the hematic amounts of RANTES by half as compared to free MTX. These results would suggest that the nanoenhanced delivery to vascular plaques of the anti-inflammatory DSPE-MTX conjugate could effectively modulate the disease progression by halting monocytes' maturation and recruitment already at the onset of atherosclerosis.


Asunto(s)
Antiinflamatorios/química , Metotrexato/química , Fosfatidiletanolaminas/química , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Dieta Alta en Grasa , Interleucina-1beta/metabolismo , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Liposomas/química , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nanomedicina , Nanopartículas/química , Tamaño de la Partícula , Células RAW 264.7
6.
Br J Pharmacol ; 177(4): 734-744, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30835815

RESUMEN

BACKGROUND AND PURPOSE: Among the three enzymes involved in the transsulfuration pathway, only cystathionine ß-synthase (CBS) converts L-cysteine into L-serine and H2 S. L-serine is also involved in the de novo sphingolipid biosynthesis through a condensation with palmitoyl-CoA by the action of serine palmitoyltransferase (SPT). Here, we have investigated if L-serine contributes to the vasorelaxant effect. EXPERIMENTAL APPROACH: The presence of CBS in mouse vascular endothelium was assessed by immunohistochemistry and immunofluorescence. The relaxant activity of L-serine (0.1-300 µM) and L-cysteine (0.1-300 µM) was estimated on mouse aorta rings, with or without endothelium. A pharmacological modulation study evaluated NO and sphingosine-1-phosphate (S1P) involvement. Levels of NO and S1P were also measured following incubation of aorta tissue with either L-serine (1, 10, and 100 µM) or L-cysteine (10, 100 µM, and 1 mM). KEY RESULTS: L-serine relaxed aorta rings in an endothelium-dependent manner. The vascular effect was reduced by L-NG-nitro-arginine methyl ester and wortmaninn. A similar pattern was obtained with L-cysteine. The S1P1 receptor antagonist (W146) or the SPT inhibitor (myriocin) reduced either L-serine or L-cysteine relaxant effect. L-serine or L-cysteine incubation increased NO and S1P levels in mouse aorta. CONCLUSIONS AND IMPLICATIONS: L-serine, a by-product formed within the transsulfuration pathway starting from L-cysteine via CBS, contributes to the vasodilator action of L-cysteine. The L-serine effect involves both NO and S1P. This mechanism could be involved in the marked dysregulation of vascular tone in hyperhomocysteinemic patients (CBS deficiency) and may represent a feasible therapeutic target. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.


Asunto(s)
Cistationina betasintasa , Cisteína , Animales , Aorta , Cistationina , Humanos , Lisofosfolípidos , Ratones , Serina , Esfingosina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA