Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Muscle Nerve ; 63(2): 268-272, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33205838

RESUMEN

BACKGROUND: Erythropoietin (EPO) promotes myelination and functional recovery in rodent peripheral nerve injury (PNI). While EPO receptors (EpoR) are present in Schwann cells, the role of EpoR in PNI recovery is unknown because of the lack of EpoR antagonists or Schwann cell-specific EpoR knockout animals. METHODS: Using the Cre-loxP system, we developed a myelin protein zero (Mpz) promoter-driven knockout mouse model of Schwann cell EpoR (MpzCre-EpoRflox/flox , Mpz-EpoR-KO). Mpz-EpoR-KO and control mice were assigned to sciatic nerve crush injury followed by EPO treatment. RESULTS: EPO treatment significantly accelerated functional recovery in control mice in contrast to significantly reduced functional recovery in Mpz-EpoR-KO mice. Significant muscle atrophy was found in the injured hindlimb of EPO-treated Mpz-EpoR-KO mice but not in EPO-treated control mice. CONCLUSIONS: These preliminary findings provide direct evidence for an obligatory role of Schwann-cell specific EpoR for EPO-induced functional recovery and muscle atrophy following PNI.


Asunto(s)
Eritropoyetina/metabolismo , Atrofia Muscular/genética , Traumatismos de los Nervios Periféricos/genética , Receptores de Eritropoyetina/genética , Recuperación de la Función/genética , Células de Schwann/metabolismo , Nervio Ciático/lesiones , Animales , Lesiones por Aplastamiento/complicaciones , Lesiones por Aplastamiento/genética , Lesiones por Aplastamiento/metabolismo , Ratones , Ratones Noqueados , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/metabolismo , Receptores de Eritropoyetina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Neural Regen Res ; 18(2): 439-444, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35900443

RESUMEN

We recently demonstrated a repurposing beneficial effect of 4-aminopyridine (4-AP), a potassium channel blocker, on functional recovery and muscle atrophy after sciatic nerve crush injury in rodents. However, this effect of 4-AP is unknown in nerve transection, gap, and grafting models. To evaluate and compare the functional recovery, nerve morphology, and muscle atrophy, we used a novel stepwise nerve transection with gluing (STG), as well as 7-mm irreparable nerve gap (G-7/0) and 7-mm isografting in 5-mm gap (G-5/7) models in the absence and presence of 4-AP treatment. Following surgery, sciatic functional index was determined weekly to evaluate the direct in vivo global motor functional recovery. After 12 weeks, nerves were processed for whole-mount immunofluorescence imaging, and tibialis anterior muscles were harvested for wet weight and quantitative histomorphological analyses for muscle fiber cross-sectional area and minimal Feret's diameter. Average post-injury sciatic functional index values in STG and G-5/7 models were significantly greater than those in the G-7/0 model. 4-AP did not affect the sciatic functional index recovery in any model. Compared to STG, nerve imaging revealed more misdirected axons and distorted nerve architecture with isografting. While muscle weight, cross-sectional area, and minimal Feret's diameter were significantly smaller in G-7/0 model compared with STG and G-5/7, 4-AP treatment significantly increased right TA muscle mass, cross-sectional area, and minimal Feret's diameter in G-7/0 model. These findings demonstrate that functional recovery and muscle atrophy after peripheral nerve injury are directly related to the intervening nerve gap, and 4-AP exerts differential effects on functional recovery and muscle atrophy.

3.
Mil Med ; 186(Suppl 1): 479-485, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33499448

RESUMEN

INTRODUCTION: Traumatic peripheral nerve injuries (TPNIs) are increasingly prevalent in battlefield trauma, and the functional recovery with TPNIs depends on axonal continuity. Although the physical examination is the main tool for clinical diagnosis with diagnostic work up, there is no diagnostic tool available to differentiate nerve injuries based on axonal continuity. Therefore, treatment often relies on "watchful waiting," and this leads to muscle weakness and further reduces the chances of functional recovery. 4-aminopyridine (4-AP) is clinically used in multiple sclerosis patients for walking performance improvement. Preliminary results in conscious mice suggested a diagnostic role of 4-AP in distinguishing axonal continuity. In this study, we thought to evaluate the diagnostic potential of 4-AP on the axonal continuity in unawake/sedated animals. MATERIALS AND METHODS: Rat sciatic nerve crush and transection injuries were used in this study. Briefly, rats were anesthetized with isoflurane and mechanically ventilated with oxygen-balanced vaporized isoflurane. Sciatic nerve and triceps surae muscles were exposed by blunt dissection, and a stimulating electrode was placed under a sciatic nerve proximal to the crush injury. A force transducer measured muscle tension response to electrical stimulation of sciatic nerve. Muscle response was measured before crush, after crush, and 30 minutes after systemic 4-AP (150 µg/kg) or local (4-AP)-poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG) treatment. RESULTS: We found that both crush and transection injuries in sciatic nerve completely abolished muscle response to electrical stimulation. Single dose of systemic 4-AP and local (4-AP)-PLGA-PEG treatment with crush injury significantly restored muscle responses to electrical stimulation after 30 minutes of administration. However, systemic 4-AP treatment had no effect on muscle response after nerve transection. These results clearly demonstrate that 4-AP can restore nerve conduction and produce muscle response within minutes of administration only when there is a nerve continuity, even in the sedated animal. CONCLUSIONS: We conclude that 4-AP could be a promising diagnostic agent in differentiating TPNI based on axonal continuity.


Asunto(s)
Axones , 4-Aminopiridina/farmacología , 4-Aminopiridina/uso terapéutico , Animales , Masculino , Ratones , Traumatismos de los Nervios Periféricos/diagnóstico , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Nervio Ciático
4.
Neurogastroenterol Motil ; 33(2): e14049, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33368893

RESUMEN

BACKGROUND: Dysmotility and postoperative ileus (POI) are major clinical problems after surgical trauma and it is associated with increased intestinal inflammation and oxidative stress. Despite the high occurrence of POI following intra-abdominal surgeries, no effective treatment is currently available. Erythropoietin (EPO) is a multifunctional tissue-protective cytokine with potent anti-inflammatory and anti-oxidative properties, and it is an FDA approved medicine for clinical use. While both EPO and EPO receptors (EPOR) are widely expressed in the gut, the role of EPO in POI is largely unknown. This study was designed to explore the possible beneficial effect of EPO in a mouse model of POI. METHODS: Mice were subjected to intestinal manipulation to induce standard POI and intestinal transit time was determined at 24-h post-injury with or without EPO treatment (5000 units/kg, once, IP, immediately after intestinal trauma). Intestinal samples were harvested for histological and immunohistochemical analysis. RESULTS: Systemic EPO significantly improved intestinal transit time compared with control group and it was associated with significantly increased levels of tissue macrophages and reduced levels of oxidative stress. CONCLUSIONS AND INFERENCES: This is the first pre-clinical study to document novel beneficial effects of EPO in gut dysmotility and our findings suggest that the beneficial effects of EPO in POI is predominantly mediated by its anti-oxidative and immunomodulatory properties.


Asunto(s)
Eritropoyetina/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Seudoobstrucción Intestinal , Recuperación de la Función/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Complicaciones Posoperatorias
5.
Mil Med ; 186(Suppl 1): 696-703, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33499508

RESUMEN

BACKGROUND: Functional recovery following primary nerve repair of a transected nerve is often poor even with advanced microsurgical techniques. Recently, we developed a novel sciatic nerve transection method where end-to-end apposition of the nerve endings with minimal gap was performed with fibrin glue. We demonstrated that transected nerve repair with gluing results in optimal functional recovery with improved axonal neurofilament distribution profile compared to the end-to-end micro-suture repair. However, the impact of axonal misdirection and misalignment of nerve fascicles remains largely unknown in nerve-injury recovery. We addressed this issue using a novel nerve repair model with gluing. METHODS: In our complete "Flip and Transection with Glue" model, the nerve was "first" transected to 40% of its width from each side and distal stump was transversely flipped, then 20 µL of fibrin glue was applied around the transection site and the central 20% nerve was completely transected before fibrin glue clotting. Mice were followed for 28 days with weekly assessment of sciatic function. Immunohistochemistry analysis of both sciatic nerves was performed for neurofilament distribution and angiogenesis. Tibialis anterior muscles were analyzed for atrophy and histomorphometry. RESULTS: Functional recovery following misaligned repair remained persistently low throughout the postsurgical period. Immunohistochemistry of nerve sections revealed significantly increased aberrant axonal neurofilaments in injured and distal nerve segments compared to proximal segments. Increased aberrant neurofilament profiles in the injured and distal nerve segments were associated with significantly increased nerve blood-vessel density and branching index than in the proximal segment. Injured limbs had significant muscle atrophy, and muscle fiber distribution showed significantly increased numbers of smaller muscle fibers and decreased numbers of larger muscle fibers. CONCLUSIONS: These findings in a novel nerve transection mouse model with misaligned repair suggest that aberrant neurofilament distributions and axonal misdirections play an important role in functional recovery and muscle atrophy.


Asunto(s)
Filamentos Intermedios , Animales , Adhesivo de Tejido de Fibrina/farmacología , Adhesivo de Tejido de Fibrina/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Recuperación de la Función , Nervio Ciático/cirugía
6.
Int Immunopharmacol ; 82: 106330, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32143001

RESUMEN

The functional recovery following non-severing peripheral nerve injury (PNI) is often incomplete. Erythropoietin (EPO) is a pleiotropic hormone and it has been shown to protect peripheral nerves following mild and even moderate severity injuries. However, the effectiveness of EPO in severe PNI is largely unknown. In this study, we sought to investigate the neuroprotective effect of a new dose regimen of EPO in severe sciatic nerve crush injury (SSCI). Adult male mice (8 animals/group) were randomly assigned to sham (normal saline, 0.1 ml/mouse), SSCI (normal saline, 0.1 ml/mouse) and SSCI with EPO (5000 IU/kg) groups. SSCI was performed using calibrated forceps for 30 sec. EPO or normal saline was administered intraperitoneally immediately after the SSCI and at post-injury day1 and 2. The functional recovery after injury was assessed by sciatic function index (SFI), von Frey Test (VFT), and grip strength test. Mice were euthanized on day 7 and 21 and nerves at injury/peri-injury site were processed for gene (quantitative real-time PCR) and protein (immunohistochemistry) expression analysis. EPO significantly improved SFI, VFT, and hind limb paw grip strength from post-injury day 7. EPO demonstrated significant regulatory effects on mRNA expression of inflammatory (IL-1ß and TNF-α), anti-inflammatory (IL-10), angiogenesis (VEGF and eNOS), and myelination (MBP) genes. The protein expression of IL-1ß, F4/80, CD31, NF-κB p65, NF-H, MPZ, and DHE (redox-sensitive probe) was also significantly modulated by EPO treatment. In conclusion, the new dose regimen of EPO augments sciatic nerve functional recovery by mitigating inflammatory, anti-inflammatory, oxidative stress, angiogenesis, and myelination components of SSCI.

7.
Sci Rep ; 10(1): 21637, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303798

RESUMEN

Peripheral nerve transection is associated with permanent functional deficit even after advanced microsurgical repair. While it is difficult to investigate the reasons of poor functional outcomes of microsurgical repairs in humans, we developed a novel pre-clinical nerve transection method that allows reliable evaluation of nerve regeneration, neural angiogenesis, muscle atrophy, and functional recovery. Adult male C57BL/6 mice were randomly assigned to four different types of sciatic nerve transection: Simple Transection (ST), Simple Transection & Glue (TG), Stepwise Transection and Sutures (SU), and Stepwise Transection and Glue (STG). Mice were followed for 28 days for sciatic function index (SFI), and sciatic nerves and hind limb muscles were harvested for histomorphological and cellular analyses. Immunohistochemistry revealed more directional nerve fiber growth in SU and STG groups compared with ST and TG groups. Compared to ST and TG groups, optimal neural vessel density and branching index in SU and STG groups were associated with significantly decreased muscle atrophy, increased myofiber diameter, and improved SFI. In conclusion, our novel STG method represents an easily reproducible and reliable model with close resemblance to the pathophysiological characteristics of SU model, and this can be easily reproduced by any lab.


Asunto(s)
Vasos Sanguíneos/patología , Músculos/patología , Nervios Periféricos/cirugía , Recuperación de la Función/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/fisiología , Regeneración Nerviosa/fisiología
8.
Bone ; 105: 75-86, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28811200

RESUMEN

Adiponectin regulates various metabolic processes including glucose flux, lipid breakdown and insulin response. We recently reported that adiponectin receptor1 (adipoR1) activation by a small molecule reverses osteopenia in leptin receptor deficient db/db (diabetic) mice. However, the role of adiponectin in bone metabolism under the setting of post-menopausal (estrogen-deficiency) osteopenia and associated metabolic derangements has not been studied. Here, we studied the therapeutic effect of the globular form of adiponectin (gAd), which is predominantly an adipoR1 agonist, in aged ovariectomized (OVX) rats and compared it with standard-of-care anti-osteoporosis drugs. In OVX rats with established osteopenia, gAd completely restored BMD and load bearing capacity and improved bone quality. Skeletal effects of gAd were comparable to PTH (osteoanabolic) but better than alendronate (anti-catabolic). Both osteoanabolic and anti-catabolic mechanisms led to the anti-osteoporosis effect of gAd. In cultured osteoblasts and bones, gAd increased a) adipoR1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) expression to promote mitochondrial respiration, which likely fueled osteoblast differentiation, b) suppressed sclerostin (a wnt antagonist) in a sirtuin1-dependent manner and c) decreased receptor-activator of nuclear factor κB ligand (RANKL) to achieve its anti-catabolic effect. The OVX-induced sarcopenia and insulin resistance were also improved by gAd. We conclude that gAd has therapeutic efficacy in estrogen deficiency-induced osteoporosis, sarcopenia and insulin resistance and hold metabolic disease modifying potential in postmenopausal women.


Asunto(s)
Adiponectina/uso terapéutico , Composición Corporal , Ovariectomía , Sarcopenia/tratamiento farmacológico , Adenilato Quinasa/metabolismo , Adiponectina/farmacología , Animales , Composición Corporal/efectos de los fármacos , Proteínas Morfogenéticas Óseas/metabolismo , Resorción Ósea/complicaciones , Resorción Ósea/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Femenino , Marcadores Genéticos , Prueba de Tolerancia a la Glucosa , Vértebras Lumbares/efectos de los fármacos , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteogénesis/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas Sprague-Dawley , Sarcopenia/complicaciones , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA