Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biofouling ; 33(9): 712-721, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28868925

RESUMEN

Transmission is a main route for bacterial contamination, involving bacterial detachment from a donor and adhesion to receiver surfaces. This work aimed to compare transmission of an extracellular polymeric substance (EPS) producing and a non-EPS producing Staphylococcus epidermidis strain from biofilms on stainless steel. After transmission, donor surfaces remained fully covered with biofilm, indicating transmission through cohesive failure in the biofilm. Counter to the numbers of biofilm bacteria, the donor and receiver biofilm thicknesses did not add up to the pre-transmission donor biofilm thickness, suggesting more compact biofilms after transmission, especially for non-EPS producing staphylococci. Accordingly, staphylococcal density per unit biofilm volume had increased from 0.20 to 0.52 µm-3 for transmission of the non-EPS producing strain under high contact pressure. The EPS producing strain had similar densities before and after transmission (0.17 µm-3). This suggests three phases in biofilm transmission: (1) compression, (2) separation and (3) relaxation of biofilm structure to its pre-transmission density in EPS-rich biofilms.


Asunto(s)
Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Acero Inoxidable , Staphylococcus epidermidis/crecimiento & desarrollo , Microscopía Confocal , Presión , Staphylococcus epidermidis/fisiología , Propiedades de Superficie , Tomografía de Coherencia Óptica
2.
Sci Rep ; 9(1): 9794, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278369

RESUMEN

Optical-coherence-tomography (OCT) is a non-destructive tool for biofilm imaging, not requiring staining, and used to measure biofilm thickness and putative comparison of biofilm structure based on signal intensity distributions in OCT-images. Quantitative comparison of biofilm signal intensities in OCT-images, is difficult due to the auto-scaling applied in OCT-instruments to ensure optimal quality of individual images. Here, we developed a method to eliminate the influence of auto-scaling in order to allow quantitative comparison of biofilm densities in different images. Auto- and re-scaled signal intensities could be qualitatively interpreted in line with biofilm characteristics for single and multi-species biofilms of different strains and species (cocci and rod-shaped organisms), demonstrating qualitative validity of auto- and re-scaling analyses. However, specific features of pseudomonas and oral multi-species biofilms were more prominently expressed after re-scaling. Quantitative validation was obtained by relating average auto- and re-scaled signal intensities across biofilm images with volumetric-bacterial-densities in biofilms, independently obtained using enumeration of bacterial numbers per unit biofilm volume. The signal intensities in auto-scaled biofilm images did not significantly relate with volumetric-bacterial-densities, whereas re-scaled intensities in images of biofilms of widely different strains and species increased linearly with independently determined volumetric-bacterial-densities in the biofilms. Herewith, the proposed re-scaling of signal intensity distributions in OCT-images significantly enhances the possibilities of biofilm imaging using OCT.


Asunto(s)
Bacterias/crecimiento & desarrollo , Biopelículas , Tomografía de Coherencia Óptica , Algoritmos , Biopelículas/crecimiento & desarrollo , Modelos Teóricos
3.
Adv Colloid Interface Sci ; 250: 15-24, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29129313

RESUMEN

Bacterial adhesion is a main problem in many biomedical, domestic, natural and industrial environments and forms the onset of the formation of a biofilm, in which adhering bacteria grow into a multi-layered film while embedding themselves in a matrix of extracellular polymeric substances. It is usually assumed that bacterial adhesion occurs from air or by convective-diffusion from a liquid suspension, but often bacteria adhere by transmission from a bacterially contaminated donor to a receiver surface. Therewith bacterial transmission is mechanistically different from adhesion, as it involves bacterial detachment from a donor surface followed by adhesion to a receiver one. Transmission is further complicated when the donor surface is not covered with a single layer of adhering bacteria but with a multi-layered biofilm, in which case bacteria can be transmitted either by interfacial failure at the biofilm-donor surface or through cohesive failure in the biofilm. Transmission through cohesive failure in a biofilm is more common than interfacial failure. The aim of this review is to oppose surface thermodynamics and adhesion force analyses, as can both be applied towards bacterial adhesion, with their appropriate extensions towards transmission. Opposition of surface thermodynamics and adhesion force analyses, will allow to distinguish between transmission of bacteria from a donor covered with a (sub)monolayer of adhering bacteria or a multi-layered biofilm. Contact angle measurements required for surface thermodynamic analyses of transmission are of an entirely different nature than analyses of adhesion forces, usually measured through atomic force microscopy. Nevertheless, transmission probabilities based on Weibull analyses of adhesion forces between bacteria and donor and receiver surfaces, correspond with the surface thermodynamic preferences of bacteria for either the donor or receiver surface. Surfaces with low adhesion forces such as polymer-brush coated or nanostructured surfaces are thus preferable for use as non-adhesive receiver surfaces, but at the same time should be avoided for use as a donor surface. Since bacterial transmission occurs under a contact pressure between two surfaces, followed by their separation under tensile or shear pressure and ultimately detachment, this will affect biofilm structure. During the compression phase of transmission, biofilms are compacted into a more dense film. After transmission, and depending on the ability of the bacterial strain involved to produce extracellular polymeric substances, biofilm left-behind on a donor or transmitted to a receiver surface will relax to its original, pre-transmission structure owing to the viscoelasticity of the extracellular polymeric substances matrix, when present. Apart from mechanistic differences between bacterial adhesion and transmission, the low numbers of bacteria generally transmitted require careful selection of suitably sensitive enumeration methods, for which culturing and optical coherence tomography are suggested. Opposing adhesion and transmission as done in this review, not only yields a better understanding of bacterial transmission, but may stimulate researchers to more carefully consider whether an adhesion or transmission model is most appropriate in the specific area of application aimed for, rather than routinely relying on adhesion models.


Asunto(s)
Adhesión Bacteriana/fisiología , Infecciones Bacterianas/transmisión , Fenómenos Fisiológicos Bacterianos , Biopelículas , Humanos , Microscopía de Fuerza Atómica , Nanoestructuras/microbiología , Termodinámica
4.
Microb Biotechnol ; 10(6): 1744-1752, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28771954

RESUMEN

In real-life situations, bacteria are often transmitted from biofilms growing on donor surfaces to receiver ones. Bacterial transmission is more complex than adhesion, involving bacterial detachment from donor and subsequent adhesion to receiver surfaces. Here, we describe a new device to study shear-induced bacterial transmission from a (stainless steel) pipe to a (silicone rubber) tube and compare transmission of EPS-producing and non-EPS-producing staphylococci. Transmission of an entire biofilm from the donor to the receiver tube did not occur, indicative of cohesive failure in the biofilm rather than of adhesive failure at the donor-biofilm interface. Biofilm was gradually transmitted over an increasing length of receiver tube, occurring mostly to the first 50 cm of the receiver tube. Under high-shearing velocity, transmission of non-EPS-producing bacteria to the second half decreased non-linearly, likely due to rapid thinning of the lowly lubricious biofilm. Oppositely, transmission of EPS-producing strains to the second tube half was not affected by higher shearing velocity due to the high lubricity and stress relaxation of the EPS-rich biofilms, ensuring continued contact with the receiver. The non-linear decrease of ongoing bacterial transmission under high-shearing velocity is new and of relevance in for instance, high-speed food slicers and food packaging.


Asunto(s)
Biopelículas , Elastómeros de Silicona/química , Acero Inoxidable/química , Staphylococcus/fisiología , Adhesión Bacteriana , Staphylococcus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA