Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Cell Physiol ; 226(10): 2702-11, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21792927

RESUMEN

Myocardin (MYOCD) is a smooth and cardiac muscle-specific transcriptional coactivator that is required for the proper expression of contraction-related genes. Through its function to transactivate effector genes, MYOCD plays an essential role in mediating the switch between contractile and non-contractile phenotypes, particularly in smooth muscle cells (SMC). There are at least two known transcript variants of MYOCD that are expressed in SMC, differing only by the presence (+) or absence (Δ) of Exon 11. To date, no functional role has been assigned to the domain encoded by Exon 11, nor have any notable differences between the ability of each isoform to activate contraction-related genes been observed. In this study we compared sequences for Exon 11 among several mammalian species and identified a highly conserved, putative target sequence for glycogen synthase kinase 3 (GSK3) phosphorylation, suggesting a regulatory role for Exon 11 that can be modulated by alternative splicing. The function of Exon 11 was investigated by altering MYOCD splice selection in cultured porcine SMC with small interfering RNAs (siRNA) and specific chemical inhibitors, resulting in a relative increase in expression of ΔExon 11 variants in the endogenous pool of MYOCD mRNA. The relative increase in ΔExon 11 mRNAs correlated with a reduction of contractile phenotype in the porcine SMC as evidenced by morphological assessment and molecular analysis of effector genes. Together, these data suggest that MYOCD ΔExon 11 may participate in modulating SMC phenotype, potentially acting as a dominant-negative repressor of contraction-related genes.


Asunto(s)
Empalme Alternativo/fisiología , Miocitos del Músculo Liso/fisiología , Proteínas Nucleares/genética , Transactivadores/genética , Secuencia de Aminoácidos , Animales , Aorta/citología , Arterias Carótidas/citología , Secuencia Conservada , Variación Genética , Técnicas In Vitro , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fenotipo , Porcinos , Transactivadores/química , Transactivadores/metabolismo , Vejiga Urinaria/citología
2.
Lipids Health Dis ; 10: 171, 2011 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-21957910

RESUMEN

BACKGROUND: Therapeutically bioactive cell populations are currently understood to promote regenerative outcomes in vivo by leveraging mechanisms of action including secretion of growth factors, site specific engraftment and directed differentiation. Constitutive cellular populations undoubtedly participate in the regenerative process. Adipose tissue represents a source of therapeutically bioactive cell populations. The potential of these cells to participate in various aspects of the regenerative process has been demonstrated broadly. However, organ association of secretory and developmental markers to specific peri-organ adipose depots has not been investigated. To characterize this topographical association, we explored the potential of cells isolated from the stromal vascular fraction (SVF) of kidney sourced adipose to express key renal associated factors. RESULTS: We report that renal adipose tissue is a novel reservoir for EPO expressing cells. Kidney sourced adipose stromal cells demonstrate hypoxia regulated expression of EPO and VEGF transcripts. Using iso-electric focusing, we demonstrate that kidney and non-kidney sourced adipose stromal cells present unique patterns of EPO post-translational modification, consistent with the idea that renal and non-renal sources are functionally distinct adipose depots. In addition, kidney sourced adipose stromal cells specifically express the key renal developmental transcription factor WT1. CONCLUSIONS: Taken together, these data are consistent with the notion that kidney sourced adipose stromal (KiSAS) cells may be primed to recreate a regenerative micro-environment within the kidney. These findings open the possibility of isolating solid-organ associated adipose derived cell populations for therapeutic applications in organ-specific regenerative medicine products.


Asunto(s)
Adipocitos Blancos/metabolismo , Regulación de la Expresión Génica , Grasa Intraabdominal/citología , Riñón/citología , Medicina Regenerativa/métodos , Adipocitos Blancos/citología , Animales , Biomarcadores , Hipoxia de la Célula , Separación Celular , Células Cultivadas , Eritropoyetina/genética , Eritropoyetina/metabolismo , Humanos , Grasa Intraabdominal/metabolismo , Riñón/metabolismo , Masculino , Especificidad de Órganos , Procesamiento Proteico-Postraduccional , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas Lew , Factores de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo
3.
Biomaterials ; 187: 93-104, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30312852

RESUMEN

Whole organ tissue engineering is a promising approach to address organ shortages in many applications, including lung transplantation for patients with chronic pulmonary disease. Engineered lungs may be derived from animal sources after removing cellular content, exposing the extracellular matrix to serve as a scaffold for recellularization with human cells. However, the use of xenogeneic tissue sources in human transplantation raises concerns due to the presence of the antigenic Gal epitope. In the present study, lungs from wild type or α-Gal knockout pigs were harvested, decellularized, and implanted subcutaneously in a non-human primate model to evaluate the host immune response. The decellularized porcine implants were compared to a sham surgery control, as well as native porcine and decellularized macaque lung implants. The results demonstrated differential profiles of circulating and infiltrating immune cell subsets and histological outcomes depending on the implanted tissue source. Upon implantation, the decellularized α-Gal knockout lung constructs performed similarly to the decellularized wild type lung constructs. However, upon re-implantation into a chronic exposure model, the decellularized wild type lung constructs resulted in a greater proportion of infiltrating CD45+ cells, including CD3+ and CD8+ cytotoxic T-cells, likely mediated by an increase in production of Gal-specific antibodies. The results suggest that removal of the Gal epitope can potentially reduce adverse inflammatory reactions associated with chronic exposure to engineered organs containing xenogeneic components.


Asunto(s)
Galactosiltransferasas/genética , Enfermedades Pulmonares/terapia , Pulmón/citología , Andamios del Tejido , Inmunidad Adaptativa , Animales , Materiales Biocompatibles , Galactosiltransferasas/inmunología , Técnicas de Inactivación de Genes , Humanos , Inmunidad Humoral , Enfermedades Pulmonares/inmunología , Macaca mulatta , Porcinos , Ingeniería de Tejidos , Trasplante , Trasplante Heterólogo
4.
Regen Med ; 10(7): 815-39, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26568079

RESUMEN

AIM: Identification of mechanistic pathways for selected renal cell (SRC) therapeutic bioactivity in rodent models of chronic kidney disease. MATERIALS & METHODS: In vivo and in vitro functional bioassays applied to investigate regenerative outcomes associated with delivery of SRC to diseased rodent kidney. RESULTS: In vivo, SRC reduces chronic infiltration by monocytes/macrophages. SRC attenuates NF-κB and PAI-1 responses while simultaneously promoting host tubular cell expansion through trophic cues. In vitro, SRC-derived conditioned media attenuates TNF-α-induced NF-κB response, TGF-ß-mediated PAI-1 response and increases expression of transcripts associated with cell cycle regulation. Observed bioactive responses were from vesicle and nonvesicle-associated factors, including specific miRNAs. CONCLUSION: We identify a paracrine mechanism for SRC immunomodulatory and trophic cues on host renal tissues, catalyzing long-term functional benefits in vivo.


Asunto(s)
Regulación de la Expresión Génica , Túbulos Renales/metabolismo , Macrófagos/metabolismo , FN-kappa B/metabolismo , Insuficiencia Renal Crónica/metabolismo , Factor de Crecimiento Transformador beta1/biosíntesis , Animales , Modelos Animales de Enfermedad , Túbulos Renales/patología , Macrófagos/patología , FN-kappa B/genética , Inhibidor 1 de Activador Plasminogénico/biosíntesis , Inhibidor 1 de Activador Plasminogénico/genética , Ratas , Ratas Transgénicas , Ratas Zucker , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Factor de Crecimiento Transformador beta1/genética
5.
Methods Mol Biol ; 1001: 53-64, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23494420

RESUMEN

The following methods outline the procedures for isolating primary renal cells from kidney tissue via enzymatic digestion, followed by their culture, harvest, and then fractionation of renal subpopulations from primary culture. The current methods describe procedures to sub-fractionate biologically active cells that have been used to treat and stabilize renal function in models of chronic kidney disease (Kelley et al. Am J Physiol Renal Physiol 299(5):F1026-F1039, 2010).


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Fraccionamiento Celular/métodos , Separación Celular/métodos , Células Epiteliales/citología , Túbulos Renales/citología , Medicina Regenerativa/métodos , Insuficiencia Renal Crónica/terapia , Animales , Perros , Humanos , Ratas
6.
Methods Mol Biol ; 1001: 35-42, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23494418

RESUMEN

Pulsatile cell bodies, three-dimensional cell clusters with satellite streaming cells, can be isolated from -esophageal tissue. One of the key features of these clusters is that they pulsate at rhythmic rates and demonstrate contractility under several in vitro conditions. Their ability to pulsate appears to be due to the presence of interstitial cells of Cajal (ICC), which mediate signal transmission from nerve to muscle cells. As predicted, the cells comprising these clusters express phenotypic and genotypic markers characteristic of smooth and skeletal muscle, neuronal, and epithelial cells. Because of the critical role of ICC in gastrointestinal tract motility, loss of function in these cells can result in a variety of pathologies. Cultures of pulsatile cell bodies may have utility as an in vitro model to study tissue engineering and regenerative medicine approaches to treating defects in gastrointestinal rhythmicity due to disease or injury.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Esófago/citología , Células Intersticiales de Cajal/fisiología , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Comunicación Celular/fisiología , Humanos
7.
Methods Mol Biol ; 1001: 189-96, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23494430

RESUMEN

Regenerative medicine and tissue engineering approaches for solving current medical dilemmas such as organ failure, congenital defect, or reconstruction following disease or trauma typically require specific considerations regarding biomaterial selection, identification of key cell types, and applicable surgical techniques (Lanza et al. Principles of tissue engineering, Academic, 2007; Kikuchi, Kanama., Quart Rev 24:51-67, 2007). The ability to evaluate these components in vitro under conditions which simulate relevant in vivo environments can reduce development risks including time and money costs associated with early-stage product development. Similarly, such methods can be useful in making progress in researching features of natural and synthetic biomaterial such as porosity, strength, surface topography, and functionalization, and their singular or collective effects on cell behavior (Kikuchi and Kanama., Quart Rev 24:51-67, 2007; Furth et al. Biomaterials 28:5068-5073, 2007; Mieszawska and Kaplan., BMC Biol 8:59, 2010).Adhesion, migration, and gene and protein expression are all cell behaviors that can be affected by properties of a chosen biomaterial and vary based upon organ system (Cornwell et al. J Biomater Res 71A:55-62, 2004; David et al. Tissue Eng 8(5):787-798, 2002). Understanding of these properties and their role in combination with biomaterial in remodeling is sought in order to fully harness and direct regeneration (Lanza et al. Principles of tissue engineering, Academic Press, 2007; Mieszawska and Kaplan. BMC Biol 8:59, 2010; Matragotri and Lahann J. Nat Mater 8:15-23, 2009).


Asunto(s)
Materiales Biocompatibles/metabolismo , Comunicación Celular/fisiología , Movimiento Celular/fisiología , Regulación de la Expresión Génica/fisiología , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Adhesión Celular/fisiología , Humanos
8.
Methods Mol Biol ; 1001: 279-87, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23494437

RESUMEN

Delivery of cells to organs has primarily relied on formulating the cells in a nonviscous liquid carrier. We have developed a methodology to isolate selected renal cells (SRC) that have provided functional stability to damaged kidneys in preclinical models (Kelley et al. Poster presentation at 71st scientific sessions of American diabetes association , 2011; Kelley et al. Oral presentation given at Tissue Engineering and Regenerative Medicine International Society (TERMIS)-North America annual conference, 2010; Presnell et al. Tissue Eng Part C Methods 17:261-273, 2011; Kelley et al. Am J Physiol Renal Physiol 299:F1026-F1039, 2010). In order to facilitate SRC injection into the kidney of patients who have chronic kidney disease, we have developed a strategy to immobilize the cells in a hydrogel matrix. This hydrogel (gelatin) supports cells by maintaining them in a three-dimensional state during storage and shipment (both at cold temperatures) while facilitating the delivery of cells by liquefying when engrafting into the kidney. This chapter will define a method for the formulation of the kidney epithelial cells within a hydrogel.


Asunto(s)
Trasplante de Células/métodos , Células Epiteliales/citología , Enfermedades Renales/terapia , Riñón/citología , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Animales , Hidrogel de Polietilenoglicol-Dimetacrilato , Ratas
9.
Methods Mol Biol ; 1001: 311-24, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23494440

RESUMEN

Regenerative constructs composed of synthetically sourced, biodegradable biomaterials seeded with smooth muscle-like cells have been leveraged to mediate regeneration of bladder and bladder-like neo-organs. Here, we describe how such constructs may be applied to catalyze regeneration of esophagus and small intestine in preclinical rodent models.


Asunto(s)
Esófago/citología , Intestino Delgado/citología , Medicina Regenerativa/métodos , Síndrome del Intestino Corto/terapia , Ingeniería de Tejidos/métodos , Animales , Esófago/lesiones , Ratas
10.
Med Hypotheses ; 78(2): 231-4, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22100629

RESUMEN

Recent successes in regenerative medicine and tissue engineering of bladder and bladder-like neo-organs have leveraged regenerative constructs composed of a biodegradable scaffold seeded with a population of smooth muscle cells. We have shown that such smooth muscle cells are isolatable from adipose and other sources alternate to the primary organ. We hypothesize that this regenerative platform is not limited to regeneration of bladder and bladder-like neo-organs, but rather represents a foundational technology platform broadly applicable for regeneration of laminarly organized hollow organs. Using esophagus as an illustrative example in support of this hypothesis, we demonstrate that patch constructs composed of adipose-derived smooth muscle cells seeded on a biodegradable matrix catalyze complete regeneration of the esophageal wall in a rodent model of esophageal injury. By implication, such regenerative constructs may potentially be used to mediate the regeneration of any laminarly organized tubular organ.


Asunto(s)
Esófago/fisiología , Regeneración/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido , Vejiga Urinaria/fisiología , Implantes Absorbibles , Animales , Femenino , Miocitos del Músculo Liso/patología , Ratas , Ratas Endogámicas Lew , Medicina Regenerativa , Ingeniería de Tejidos/instrumentación
11.
Tissue Eng Part A ; 18(9-10): 1025-34, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22136657

RESUMEN

Urinary pathology requiring urinary diversion, partial or full bladder replacement, is a significant clinical problem affecting ~14,000 individuals annually in the United States alone. The use of gastrointestinal tissue for urinary diversion or bladder reconstruction/replacement surgeries is frequently associated with complications. To try and alleviate or reduce the frequency of these complications, tissue engineering and regenerative medicine strategies have been developed using bio-absorbable materials seeded with cells derived from the bladder. However, bladder-sourced cells may not always be suitable for such applications, especially in patients with bladder cancer. In this study, we describe the isolation and characterization of smooth muscle cells (SMCs) from porcine adipose and peripheral blood that are phenotypically and functionally indistinguishable from bladder-derived SMCs. In a preclinical Good Laboratory Practice study, we demonstrate that autologous adipose- and peripheral blood-derived SMCs may be used to seed synthetic, biodegradable tubular scaffold structures and that implantation of these seeded scaffolds into a porcine cystectomy model leads to successful de novo regeneration of a tubular neo-organ composed of urinary-like neo-tissue that is histologically identical to native bladder. The ability to create urologic structures de novo from scaffolds seeded by autologous adipose- or peripheral blood-derived SMCs will greatly facilitate the translation of urologic tissue engineering technologies into clinical practice.


Asunto(s)
Tejido Adiposo/citología , Regeneración Tisular Dirigida/métodos , Ingeniería de Tejidos/métodos , Vejiga Urinaria/cirugía , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Masculino , Miocitos del Músculo Liso/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos , Andamios del Tejido/química
12.
Appl Immunohistochem Mol Morphol ; 19(2): 184-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20930617

RESUMEN

Bladder tissue has been regenerated in humans with neurogenic bladder using an implant produced from autologous urothelial (UC) and smooth muscle cells (SMC) expanded from bladder biopsies seeded onto a biodegradable synthetic scaffold. As the majority of bladder cancers are urothelial carcinomas (aka, transitional cell carcinoma), this 2-cell type autologous sourcing strategy presents significant challenges to product development. Entire bladders have been regenerated in cystectomized animals using a single-cell-type sourcing strategy: implants were seeded with bladder-derived SMC-only. Applying the bladder SMC-only sourcing strategy to produce clinical implants for bladder replacement or urinary diversion in bladder cancer patients requires methods for screening SMC cultures for the presence of potentially cancerous UC cells to provide evidence of SMC culture purity before seeding the scaffold. In this report, we show a 10-fold to 100-fold improvement in the sensitivity of qualitative and quantitative reverse-transcription PCR (qRT-PCR)-based assays for detecting UC positive for Cytokeratin 5 (CK5) in mixed SMC/UC cultures when the cell population was first subjected to magnetic activated cell sorting to enrich for cells expressing the epithelial cell adhesion molecule (known as EPCAM or CD326), a marker known to be present in normal UC and upregulated in the cancerous UC.


Asunto(s)
Antígenos de Neoplasias/análisis , Biomarcadores de Tumor/análisis , Moléculas de Adhesión Celular/análisis , Queratina-5/análisis , Miocitos del Músculo Liso/patología , Urotelio/patología , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/metabolismo , Carcinoma de Células Transicionales/patología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Técnicas de Cultivo de Célula , Molécula de Adhesión Celular Epitelial , Citometría de Flujo , Humanos , Queratina-5/genética , Queratina-5/metabolismo , Magnetismo , Miocitos del Músculo Liso/metabolismo , Técnicas de Cultivo de Órganos , Regeneración , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido , Trasplante Autólogo , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Vejiga Urinaria Neurogénica/genética , Vejiga Urinaria Neurogénica/metabolismo , Vejiga Urinaria Neurogénica/patología , Urotelio/metabolismo
13.
Tissue Eng Part C Methods ; 17(8): 843-60, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21595545

RESUMEN

Adipose tissue contains a heterogeneous cell population composed of endothelial cells, adipocytes, smooth muscle cells (SMC), and mesenchymal progenitors and stromal cells that meet the criteria put forth by the International Society for Cellular Therapy as defining mesenchymal stem cells (MSC). In this study, we expanded the stromal vascular fraction (SVF) of human adipose tissue and characterized the resulting adherent primary cell cultures by quantitative reverse transcription-polymerase chain reaction, antigen expression, protein fingerprinting, growth kinetics, in vitro tri-lineage differentiation bioactivity, and functional responses to small molecules modulating SMC-related developmental pathways and compared the results to those obtained with functionally validated MSC cultures. SVF-derived initial cultures (P0) were expanded in a defined medium that was not optimized for MSC growth conditions, neither were recombinant cytokines or growth factors added to the media to direct differentiation. The adherent cell cultures derived from SVF expansion under these conditions had markedly distinct phenotypic and biological properties relative to functionally validated MSC cultures. SVF-derived adherent cell cultures retained characteristics consistent with the SMC subpopulation within adipose tissue--phenotype, gene, and protein expression--that were independent of passage number and source of SVF (n=4 independent donors). SVF-derived cells presented significantly less robust in vitro tri-lineage differentiation bioactivity relative to validated MSC. Expanded SVF cells and MSC had opposite responses to the thromboxane A2 mimetic U46619, demonstrating an unambiguous functional distinction between the two cell types. Taken together, these data support the conclusions that SVF cells expanded under the conditions described in these studies are accurately described as adipose-derived SMC and represent a cellular subpopulation of adipose SVF that is separate and distinct from other classes of adipose-derived cells.


Asunto(s)
Tejido Adiposo/citología , Células Madre Mesenquimatosas/citología , Miocitos del Músculo Liso/citología , Células del Estroma/citología , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Adipocitos/citología , Biopsia , Células de la Médula Ósea/citología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Proliferación Celular , Humanos , Fenotipo , Tromboxano A2/metabolismo
14.
Regen Med ; 6(6): 721-31, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22050524

RESUMEN

AIMS: To apply an organ regeneration platform technology of autologous smooth muscle cell/biomaterial combination products, previously demonstrated to be successful for urinary tissue regeneration, to the regeneration of the small intestine. MATERIALS & METHODS: Patch and tubular constructs were implanted in rodent small intestines and histologically evaluated over a time course for evidence of regeneration of the laminarly organized neo-mucosa and muscle layers. RESULTS: Laminarly organized neo-mucosa and muscle layer bundles are demonstrated as early as 8 weeks postimplantation. CONCLUSION: An organ regeneration technology platform of autologous smooth muscle cell/biomaterial combination products can be extended to the regeneration of the small intestine.


Asunto(s)
Intestino Delgado/fisiología , Miocitos del Músculo Liso/citología , Implantación de Prótesis , Regeneración/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Anastomosis Quirúrgica , Animales , Femenino , Regulación de la Expresión Génica , Intestino Delgado/citología , Intestino Delgado/cirugía , Masculino , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/trasplante , Miocitos del Músculo Liso/ultraestructura , Ratas , Ratas Endogámicas Lew
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA