Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 21(2): 163, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26840281

RESUMEN

Aging is a multifactorial and tissue-specific process involving diverse alterations regarded as the "hallmarks of aging", which include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intracellular communication. Virtually all these hallmarks are targeted by dietary olive oil, particularly by virgin olive oil, since many of its beneficial effects can be accounted not only for the monounsaturated nature of its predominant fatty acid (oleic acid), but also for the bioactivity of its minor compounds, which can act on cells though both direct and indirect mechanisms due to their ability to modulate gene expression. Among the minor constituents of virgin olive oil, secoiridoids stand out for their capacity to modulate many pathways that are relevant for the aging process. Attenuation of aging-related alterations by olive oil or its minor compounds has been observed in cellular, animal and human models. How olive oil targets the hallmarks of aging could explain the improvement of health, reduced risk of aging-associated diseases, and increased longevity which have been associated with consumption of a typical Mediterranean diet containing this edible oil as the predominant fat source.


Asunto(s)
Envejecimiento/efectos de los fármacos , Grasas Insaturadas en la Dieta/farmacología , Aceite de Oliva/farmacología , Envejecimiento/genética , Animales , Comunicación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Humanos
2.
Biogerontology ; 16(5): 655-70, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25860863

RESUMEN

The Membrane Theory of Aging proposes that lifespan is inversely related to the level of unsaturation in membrane phospholipids. Calorie restriction (CR) without malnutrition extends lifespan in many model organisms, which may be related to alterations in membrane phospholipids fatty acids. During the last few years our research focused on studying how altering the predominant fat source affects the outcome of CR in mice. We have established four dietary groups: one control group fed 95 % of a pre-determined ad libitum intake (in order to prevent obesity), and three CR groups fed 40 % less than ad libitum intake. Lipid source for the control and one of the CR groups was soybean oil (high in n-6 PUFA) whereas the two remaining CR groups were fed diets containing fish oil (high in n-3 PUFA), or lard (high in saturated and monounsaturated fatty acids). Dietary intervention periods ranged from 1 to 18 months. We performed a longitudinal lifespan study and a cross-sectional study set up to evaluate several mitochondrial parameters which included fatty acid composition, H(+) leak, activities of electron transport chain enzymes, ROS generation, lipid peroxidation, mitochondrial ultrastructure, and mitochondrial apoptotic signaling in liver and skeletal muscle. These approaches applied to different cohorts of mice have independently indicated that lard as a fat source often maximizes the effects of 40 % CR on mice. These effects could be due to significant increases of monounsaturated fatty acids levels, in accordance with the Membrane Theory of Aging.


Asunto(s)
Envejecimiento/metabolismo , Restricción Calórica , Grasas de la Dieta/administración & dosificación , Mitocondrias Hepáticas/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Factores de Edad , Envejecimiento/patología , Apoptosis , Grasas de la Dieta/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Aceites de Pescado/administración & dosificación , Aceites de Pescado/metabolismo , Peroxidación de Lípido , Longevidad , Potencial de la Membrana Mitocondrial , Mitocondrias Hepáticas/ultraestructura , Mitocondrias Musculares/ultraestructura , Modelos Biológicos , Músculo Esquelético/ultraestructura , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Aceite de Soja/administración & dosificación , Aceite de Soja/metabolismo , Factores de Tiempo
3.
Redox Biol ; 46: 102061, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34246922

RESUMEN

Dietary fats are important for human health, yet it is not fully understood how different fats affect various health problems. Although polyunsaturated fatty acids (PUFAs) are generally considered as highly oxidizable, those of the n-3 series can ameliorate the risk of many age-related disorders. Coenzyme Q (CoQ) is both an essential component of the mitochondrial electron transport chain and the only lipid-soluble antioxidant that animal cells can synthesize. Previous work has documented the protective antioxidant properties of CoQ against the autoxidation products of PUFAs. Here, we have explored in vitro and in vivo models to better understand the regulation of CoQ biosynthesis by dietary fats. In mouse liver, PUFAs increased CoQ content, and PUFAs of the n-3 series increased preferentially CoQ10. This response was recapitulated in hepatic cells cultured in the presence of lipid emulsions, where we additionally demonstrated a role for n-3 PUFAs as regulators of CoQ biosynthesis via the upregulation of several COQ proteins and farnesyl pyrophosphate levels. In both models, n-3 PUFAs altered the mitochondrial network without changing the overall mitochondrial mass. Furthermore, in cellular systems, n-3 PUFAs favored the synthesis of CoQ10 over CoQ9, thus altering the ratio between CoQ isoforms through a mechanism that involved downregulation of farnesyl diphosphate synthase activity. This effect was recapitulated by both siRNA silencing and by pharmacological inhibition of farnesyl diphosphate synthase with zoledronic acid. We highlight here the ability of n-3 PUFAs to regulate CoQ biosynthesis, CoQ content, and the ratio between its isoforms, which might be relevant to better understand the health benefits associated with this type of fat. Additionally, we identify for the first time zoledronic acid as a drug that inhibits CoQ biosynthesis, which must be also considered with respect to its biological effects on patients.


Asunto(s)
Ácidos Grasos Omega-3 , Hígado/enzimología , Mitocondrias , Ubiquinona , Animales , Antioxidantes , Dieta , Ratones
4.
J Endocrinol ; 248(1): 31-44, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33112796

RESUMEN

A reduction in hepatocyte growth hormone (GH)-signaling promotes non-alcoholic fatty liver disease (NAFLD). However, debate remains as to the relative contribution of the direct effects of GH on hepatocyte function vs indirect effects, via alterations in insulin-like growth factor 1 (IGF1). To isolate the role of hepatocyte GH receptor (GHR) signaling, independent of changes in IGF1, mice with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd) were treated with a vector expressing rat IGF1 targeted specifically to hepatocytes. Compared to GHR-intact mice, aHepGHRkd reduced circulating IGF1 and elevated GH. In male aHepGHRkd, the shift in IGF1/GH did not alter plasma glucose or non-esterified fatty acids (NEFA), but was associated with increased insulin, enhanced systemic lipid oxidation and reduced white adipose tissue (WAT) mass. Livers of male aHepGHRkd exhibited steatosis associated with increased de novo lipogenesis, hepatocyte ballooning and inflammation. In female aHepGHRkd, hepatic GHR protein levels were not detectable, but moderate levels of IGF1 were maintained, with minimal alterations in systemic metabolism and no evidence of steatosis. Reconstitution of hepatocyte IGF1 in male aHepGHRkd lowered GH and normalized insulin, whole body lipid utilization and WAT mass. However, IGF1 reconstitution did not reduce steatosis or eliminate liver injury. RNAseq analysis showed IGF1 reconstitution did not impact aHepGHRkd-induced changes in liver gene expression, despite changes in systemic metabolism. These results demonstrate the impact of aHepGHRkd is sexually dimorphic and the steatosis and liver injury observed in male aHepGHRkd mice is autonomous of IGF1, suggesting GH acts directly on the adult hepatocyte to control NAFLD progression.


Asunto(s)
Hígado Graso/etiología , Hormona del Crecimiento/fisiología , Hepatocitos/fisiología , Factor I del Crecimiento Similar a la Insulina/fisiología , Hígado/metabolismo , Animales , Femenino , Metabolismo de los Lípidos , Masculino , Ratones , Receptores de Somatotropina/fisiología , Caracteres Sexuales , Somatotrofos/metabolismo
5.
J Gerontol A Biol Sci Med Sci ; 74(6): 760-769, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30010806

RESUMEN

Loss of skeletal muscle mass and function is a hallmark of aging. This phenomenon has been related to a dysregulation of mitochondrial function and proteostasis. Calorie restriction (CR) has been demonstrated to delay aging and preserve function until late in life, particularly in muscle. Recently, we reported the type of dietary fat plays an important role in determining life span extension with 40% CR in male mice. In these conditions, lard fed mice showed an increased longevity compared to mice fed soybean or fish oils. In this article, we analyze the effect of 40% CR on muscle mitochondrial mass, autophagy, and mitochondrial dynamics markers in mice fed these diets. In CR fed animals, lard preserved muscle fibers structure, mitochondrial ultrastructure, and fission/fusion dynamics and autophagy, not only compared to control animals, but also compared with CR mice fed soybean and fish oils as dietary fat. We focus our discussion on dietary fatty acid saturation degree as an essential predictor of life span extension in CR mice.


Asunto(s)
Envejecimiento/metabolismo , Restricción Calórica , Grasas de la Dieta/administración & dosificación , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/ultraestructura , Animales , Autofagia , Beclina-1/metabolismo , Biomarcadores/metabolismo , Dinaminas/metabolismo , Aceites de Pescado/administración & dosificación , GTP Fosfohidrolasas/metabolismo , Longevidad , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Animales , Fibras Musculares Esqueléticas/ultraestructura , Proteínas Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Sarcopenia/metabolismo , Aceite de Soja/administración & dosificación , Ubiquitina-Proteína Ligasas/metabolismo
6.
Cell Metab ; 26(3): 539-546.e5, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28877457

RESUMEN

Calorie restriction, without malnutrition, has been shown to increase lifespan and is associated with a shift away from glycolysis toward beta-oxidation. The objective of this study was to mimic this metabolic shift using low-carbohydrate diets and to determine the influence of these diets on longevity and healthspan in mice. C57BL/6 mice were assigned to a ketogenic, low-carbohydrate, or control diet at 12 months of age and were either allowed to live their natural lifespan or tested for physiological function after 1 or 14 months of dietary intervention. The ketogenic diet (KD) significantly increased median lifespan and survival compared to controls. In aged mice, only those consuming a KD displayed preservation of physiological function. The KD increased protein acetylation levels and regulated mTORC1 signaling in a tissue-dependent manner. This study demonstrates that a KD extends longevity and healthspan in mice.


Asunto(s)
Dieta Cetogénica , Salud , Longevidad/fisiología , Acetilación , Adaptación Fisiológica , Animales , Dieta Baja en Carbohidratos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Especificidad de Órganos , Transducción de Señal
7.
Free Radic Biol Med ; 110: 176-187, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28603085

RESUMEN

Coenzyme Q (Q) is a lipid-soluble antioxidant essential in cellular physiology. Patients with Q deficiencies, with few exceptions, seldom respond to treatment. Current therapies rely on dietary supplementation with Q10, but due to its highly lipophilic nature, Q10 is difficult to absorb by tissues and cells. Plant polyphenols, present in the human diet, are redox active and modulate numerous cellular pathways. In the present study, we tested whether treatment with polyphenols affected the content or biosynthesis of Q. Mouse kidney proximal tubule epithelial (Tkpts) cells and human embryonic kidney cells 293 (HEK 293) were treated with several types of polyphenols, and kaempferol produced the largest increase in Q levels. Experiments with stable isotope 13C-labeled kaempferol demonstrated a previously unrecognized role of kaempferol as an aromatic ring precursor in Q biosynthesis. Investigations of the structure-function relationship of related flavonols showed the importance of two hydroxyl groups, located at C3 of the C ring and C4' of the B ring, both present in kaempferol, as important determinants of kaempferol as a Q biosynthetic precursor. Concurrently, through a mechanism not related to the enhancement of Q biosynthesis, kaempferol also augmented mitochondrial localization of Sirt3. The role of kaempferol as a precursor that increases Q levels, combined with its ability to upregulate Sirt3, identify kaempferol as a potential candidate in the design of interventions aimed on increasing endogenous Q biosynthesis, particularly in kidney.


Asunto(s)
Antioxidantes/farmacología , Células Epiteliales/efectos de los fármacos , Quempferoles/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Polifenoles/farmacología , Ubiquinona/biosíntesis , Animales , Isótopos de Carbono , Línea Celular , Células Epiteliales/citología , Células Epiteliales/enzimología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Células HEK293 , Células HL-60 , Células Hep G2 , Humanos , Marcaje Isotópico , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/enzimología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Sirtuina 3/genética , Sirtuina 3/metabolismo
8.
Exp Gerontol ; 56: 77-88, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24704714

RESUMEN

In this paper we analyzed changes in hepatocyte mitochondrial mass and ultrastructure as well as in mitochondrial markers of fission/fusion and biogenesis in mice subjected to 40% calorie restriction (CR) for 18 months versus ad libitum-fed controls. Animals subjected to CR were separated into three groups with different dietary fats: soybean oil (also in controls), fish oil and lard. Therefore, the effect of the dietary fat under CR was studied as well. Our results show that CR induced changes in hepatocyte and mitochondrial size, in the volume fraction occupied by mitochondria, and in the number of mitochondria per hepatocyte. Also, mean number of mitochondrial cristae and lengths were significantly higher in all CR groups compared with controls. Finally, CR had no remarkable effects on the expression levels of fission and fusion protein markers. However, considerable differences in many of these parameters were found when comparing the CR groups, supporting the idea that dietary fat plays a relevant role in the modulation of CR effects in aged mice.


Asunto(s)
Envejecimiento/patología , Restricción Calórica , Grasas de la Dieta/administración & dosificación , Hepatocitos/ultraestructura , Mitocondrias Hepáticas/ultraestructura , Factores de Edad , Envejecimiento/metabolismo , Animales , Biomarcadores/metabolismo , Tamaño de la Célula , Aceites de Pescado/administración & dosificación , Hepatocitos/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo , Dinámicas Mitocondriales , Tamaño Mitocondrial , Recambio Mitocondrial , Factor Nuclear 1 de Respiración/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Aceite de Soja/administración & dosificación , Factores de Tiempo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA