Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Toxicol Pathol ; 51(4): 160-175, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37632371

RESUMEN

Assessment of hypertensive tubulopathy for more than fifty animal models of hypertension in experimental pathology employs criteria that do not correspond to lesional descriptors for tubular lesions in clinical pathology. We provide a critical appraisal of experimental hypertension with the same approach used to estimate hypertensive renal tubulopathy in humans. Four models with different pathogenesis of hypertension were analyzed-chronic angiotensin (Ang) II-infused and renin-overexpressing (TTRhRen) mice, spontaneously hypertensive (SHR), and Goldblatt two-kidney one-clip (2K1C) rats. Mouse models, SHR, and the nonclipped kidney in 2K1C rats had no regular signs of hypertensive tubulopathy. Histopathology in animals was mild and limited to variations in the volume density of tubular lumen and epithelium, interstitial space, and interstitial collagen. Affected kidneys in animals demonstrated lesion values that are significantly different compared with healthy controls but correspond to mild damage if compared with hypertensive humans. The most substantial human-like hypertensive tubulopathy was detected in the clipped kidney of 2K1C rats. For the first time, our study demonstrated the regular presence of chronic progressive nephropathy (CPN) in relatively young mice and rats with induced hypertension. Because CPN may confound the assessment of rodent models of hypertension, proliferative markers should be used to verify nonhypertensive tubulopathy.


Asunto(s)
Hipertensión , Patología Clínica , Humanos , Ratas , Ratones , Animales , Ratas Endogámicas SHR , Riñón , Modelos Animales de Enfermedad
2.
Kidney Int ; 100(3): 597-612, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34181969

RESUMEN

Acute kidney injury (AKI) carries high morbidity and mortality, and effective treatments are lacking. Preclinical models support involvement of micro-RNAs (miRs) in AKI pathogenesis, although effects on the kidney transcriptome are unclear. We previously showed that injection of cord blood endothelial colony forming cell-derived exosomes, enriched in miR-486-5p, prevented ischemic AKI in mice. To further define this, we studied direct effects of miR-486-5p in mice with kidney ischemia-reperfusion injury. RNA-Seq was used to compare the impact of miR-486-5p and exosomes on the transcriptome of proximal tubules and kidney endothelial cells 24 hours after ischemia-reperfusion. In mice with AKI, injection of miR-486-5p mimic increased its levels in proximal tubules and endothelial cells, and improved plasma creatinine, histological injury, neutrophil infiltration, and apoptosis. Additionally, miR-486-5p inhibited expression of its target phosphatase and tensin homolog, and activated protein kinase B. In proximal tubules, miR-486-5p or exosomes reduced expression of genes associated with ischemic injury and the tumor necrosis factor (TNF) pathway, and altered distinct apoptotic genes. In endothelial cells, genes associated with metabolic processes were altered by miR-486-5p or exosomes, although TNF pathway genes were not affected. Thus, our results suggest that miR-486-5p may have therapeutic potential in AKI.


Asunto(s)
Lesión Renal Aguda , MicroARNs , Daño por Reperfusión , Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Animales , Apoptosis , Células Endoteliales , Isquemia , Riñón , Ratones , MicroARNs/genética , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Transcriptoma
3.
Lab Invest ; 100(3): 414-425, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31527829

RESUMEN

Prostaglandin E2 receptor EP1 (PGE2/EP1) promotes diabetic renal injury, and EP1 receptor deletion improves hyperfiltration, albuminuria, and fibrosis. The role of EP1 receptors in hypertensive kidney disease (HKD) remains controversial. We examined the contribution of EP1 receptors to HKD. EP1 null (EP1-/-) mice were bred with hypertensive TTRhRen mice (Htn) to evaluate kidney function and injury at 24 weeks. EP1 deletion had no effect on elevation of systolic blood pressure in Htn mice (HtnEP1-/-) but resulted in pronounced albuminuria and reduced FITC-inulin clearance, compared with Htn or wild-type (WT) mice. Ultrastructural injury to podocytes and glomerular endothelium was prominent in HtnEP1-/- mice; including widened subendothelial space, subendothelial lucent zones and focal lifting of endothelium from basement membrane, with focal subendothelial cell debris. Cortex COX2 mRNA was increased by EP1 deletion. Glomerular EP3 mRNA was reduced by EP1 deletion, and EP4 by Htn and EP1 deletion. In WT mice, PGE2 increased chloride reabsorption via EP1 in isolated perfused thick ascending limb (TAL), but PGE2 or EP1 deletion did not affect vasopressin-mediated chloride reabsorption. In WT and Htn mouse inner medullary collecting duct (IMCD), PGE2 inhibited vasopressin-water transport, but not in EP1-/- or HtnEP1-/- mice. Overall, EP1 mediated TAL and IMCD transport in response to PGE2 is unaltered in Htn, and EP1 is protective in HKD.


Asunto(s)
Hipertensión Renal , Podocitos , Subtipo EP1 de Receptores de Prostaglandina E , Animales , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Eliminación de Gen , Tasa de Filtración Glomerular/genética , Hipertensión Renal/metabolismo , Hipertensión Renal/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Masculino , Ratones , Ratones Transgénicos , Podocitos/citología , Podocitos/metabolismo , Podocitos/patología , Subtipo EP1 de Receptores de Prostaglandina E/genética , Subtipo EP1 de Receptores de Prostaglandina E/metabolismo
4.
Clin Sci (Lond) ; 134(14): 1887-1909, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32662516

RESUMEN

Female sex protects against development of acute kidney injury (AKI). While sex hormones may be involved in protection, the role of differential gene expression is unknown. We conducted gene profiling in male and female mice with or without kidney ischemia-reperfusion injury (IRI). Mice underwent bilateral renal pedicle clamping (30 min), and tissues were collected 24 h after reperfusion. RNA-sequencing (RNA-Seq) was performed on proximal tubules (PTs) and kidney endothelial cells. Female mice were resistant to ischemic injury compared with males, determined by plasma creatinine and neutrophil gelatinase-associated lipocalin (NGAL), histologic scores, neutrophil infiltration, and extent of apoptosis. Sham mice had sex-specific gene disparities in PT and endothelium, and male mice showed profound gene dysregulation with ischemia-reperfusion compared with females. After ischemia PTs from females exhibited smaller increases compared with males in injury-associated genes lipocalin-2 (Lcn2), hepatitis A virus cellular receptor 1 (Havcr1), and keratin 18 (Krt18), and no up-regulation of SRY-Box transcription factor 9 (Sox9) or keratin 20 (Krt20). Endothelial up-regulation of adhesion molecules and cytokines/chemokines occurred in males, but not females. Up-regulated genes in male ischemic PTs were linked to tumor necrosis factor (TNF) and Toll-like receptor (TLR) pathways, while female ischemic PTs showed up-regulated genes in pathways related to transport. The data highlight sex-specific gene expression differences in male and female PTs and endothelium before and after ischemic injury that may underlie disparities in susceptibility to AKI.


Asunto(s)
Lesión Renal Aguda/metabolismo , Células Endoteliales/metabolismo , Túbulos Renales Proximales/metabolismo , Daño por Reperfusión/metabolismo , Caracteres Sexuales , Lesión Renal Aguda/genética , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Daño por Reperfusión/genética , Análisis de Secuencia de ARN
5.
Am J Pathol ; 188(5): 1132-1148, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29454750

RESUMEN

Numerous clinical conditions can lead to organ fibrosis and functional failure. There is a great need for therapies that could effectively target pathophysiological pathways involved in fibrosis. GPR40 and GPR84 are G protein-coupled receptors with free fatty acid ligands and are associated with metabolic and inflammatory disorders. Although GPR40 and GPR84 are involved in diverse physiological processes, no evidence has demonstrated the relevance of GPR40 and GPR84 in fibrosis pathways. Using PBI-4050 (3-pentylbenzeneacetic acid sodium salt), a synthetic analog of a medium-chain fatty acid that displays agonist and antagonist ligand affinity toward GPR40 and GPR84, respectively, we uncovered an antifibrotic pathway involving these receptors. In experiments using Gpr40- and Gpr84-knockout mice in models of kidney fibrosis (unilateral ureteral obstruction, long-term post-acute ischemic injury, and adenine-induced chronic kidney disease), we found that GPR40 is protective and GPR84 is deleterious in these diseases. Moreover, through binding to GPR40 and GPR84, PBI-4050 significantly attenuated fibrosis in many injury contexts, as evidenced by the antifibrotic activity observed in kidney, liver, heart, lung, pancreas, and skin fibrosis models. Therefore, GPR40 and GPR84 may represent promising molecular targets in fibrosis pathways. We conclude that PBI-4050 is a first-in-class compound that may be effective for managing inflammatory and fibrosis-related diseases.


Asunto(s)
Enfermedades Renales/patología , Receptores Acoplados a Proteínas G/metabolismo , Insuficiencia Renal Crónica/patología , Animales , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo
6.
Clin Sci (Lond) ; 132(13): 1453-1470, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29739827

RESUMEN

Neuronal ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that maintains intracellular ubiquitin pools and promotes axonal transport. Uchl1 deletion in mice leads to progressive axonal degeneration, affecting the dorsal root ganglion that harbors axons emanating to the kidney. Innervation is a crucial regulator of renal hemodynamics, though the contribution of neuronal UCHL1 to this is unclear. Immunofluorescence revealed significant neuronal UCHL1 expression in mouse kidney, including periglomerular axons. Glomerular filtration rate trended higher in 6-week-old Uchl1-/- mice, and by 12 weeks of age, these displayed significant glomerular hyperfiltration, coincident with the onset of neurodegeneration. Angiotensin converting enzyme inhibition had no effect on glomerular filtration rate of Uchl1-/- mice indicating that the renin-angiotensin system does not contribute to the observed hyperfiltration. DCE-MRI revealed increased cortical renal blood flow in Uchl1-/- mice, suggesting that hyperfiltration results from afferent arteriole dilation. Nonetheless, hyperglycemia, cyclooxygenase-2, and nitric oxide synthases were ruled out as sources of hyperfiltration in Uchl1-/- mice as glomerular filtration rate remained unchanged following insulin treatment, and cyclooxygenase-2 and nitric oxide synthase inhibition. Finally, renal nerve dysfunction in Uchl1-/- mice is suggested given increased renal nerve arborization, decreased urinary norepinephrine, and impaired vascular reactivity. Uchl1-deleted mice demonstrate glomerular hyperfiltration associated with renal neuronal dysfunction, suggesting that neuronal UCHL1 plays a crucial role in regulating renal hemodynamics.


Asunto(s)
Tasa de Filtración Glomerular/fisiología , Enfermedades Neurodegenerativas/fisiopatología , Ubiquitina Tiolesterasa/fisiología , Animales , Arteriolas/fisiopatología , Ciclooxigenasa 2/metabolismo , Intolerancia a la Glucosa/fisiopatología , Riñón/inervación , Riñón/metabolismo , Ratones Noqueados , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Óxido Nítrico Sintasa/metabolismo , Arteria Renal/fisiopatología , Circulación Renal/fisiología , Sistema Renina-Angiotensina/fisiología , Ubiquitina Tiolesterasa/deficiencia , Ubiquitina Tiolesterasa/metabolismo , Resistencia Vascular/fisiología
7.
Diabetologia ; 59(6): 1318-28, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26995650

RESUMEN

AIMS/HYPOTHESIS: The first clinical manifestation of diabetes is polyuria. The prostaglandin E2 (PGE2) receptor EP3 antagonises arginine vasopressin (AVP)-mediated water reabsorption and its expression is increased in the diabetic kidney. The purpose of this work was to study the contribution of EP3 to diabetic polyuria and renal injury. METHODS: Male Ep 3 (-/-) (also known as Ptger3 (-/-)) mice were treated with streptozotocin (STZ) to generate a mouse model of diabetes and renal function was evaluated after 12 weeks. Isolated collecting ducts (CDs) were microperfused to study the contribution of EP3 to AVP-mediated fluid reabsorption. RESULTS: Ep 3 (-/-)-STZ mice exhibited attenuated polyuria and increased urine osmolality compared with wild-type STZ (WT-STZ) mice, suggesting enhanced water reabsorption. Compared with WT-STZ mice, Ep 3 (-/-)-STZ mice also had increased protein expression of aquaporin-1, aquaporin-2, and urea transporter A1, and reduced urinary AVP excretion, but increased medullary V2 receptors. In vitro microperfusion studies indicated that Ep 3 (-/-) and WT-STZ CDs responded to AVP stimulation similarly to those of wild-type mice, with a 60% increase in fluid reabsorption. In WT non-injected and WT-STZ mice, EP3 activation with sulprostone (PGE2 analogue) abrogated AVP-mediated water reabsorption; this effect was absent in mice lacking EP3. A major finding of this work is that Ep 3 (-/-)-STZ mice showed blunted renal cyclooxygenase-2 protein expression, reduced renal hypertrophy, reduced hyperfiltration and reduced albuminuria, as well as diminished tubular dilation and nuclear cysts. CONCLUSIONS/INTERPRETATION: Taken together, the data suggest that EP3 contributes to diabetic polyuria by inhibiting expression of aquaporins and that it promotes renal injury during diabetes. EP3 may prove to be a promising target for more selective management of diabetic kidney disease.


Asunto(s)
Riñón/metabolismo , Poliuria/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Receptores de Prostaglandina E/metabolismo , Estreptozocina/toxicidad , Agua/metabolismo , Animales , Acuaporinas/genética , Acuaporinas/metabolismo , Arginina Vasopresina/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Receptores de Prostaglandina E/genética , Subtipo EP3 de Receptores de Prostaglandina E/genética
8.
Kidney Int ; 90(6): 1238-1250, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27650731

RESUMEN

Administration of human cord blood endothelial colony-forming cells (ECFCs) or their exosomes protects mice against kidney ischemia/reperfusion injury. Here we studied the microRNA (miRNA) content of ECFC exosomes and the role of miRNA transfer in kidney and endothelial cell protection. ECFC exosomes were enriched in miR-486-5p, which targets the phosphatase and tensin homolog (PTEN) and the Akt pathway. In cultured endothelial cells exposed to hypoxia, incubation with ECFC exosomes increased miR-486-5p, decreased PTEN, and stimulated Akt phosphorylation. Exposure of hypoxic endothelial cells to conditioned medium from ECFCs pretreated with anti-miR-486-5p blocked increases in miR-486-5p and phosphorylated Akt, restored expression of PTEN, and enhanced apoptosis. Coculture of endothelial cells with ECFCs enhanced endothelial miR-486-5p levels. Targeting of PTEN by miR-486-5p was observed in endothelial cells, and PTEN knockdown blocked apoptosis. In mice with ischemic kidney injury, infusion of ECFC exosomes induced potent functional and histologic protection, associated with increased kidney miR-486-5p levels, decreased PTEN, and activation of Akt. Infusion of exosomes from ECFCs transfected with anti-miR-486-5p had no protective effect. Thus, delivery of ECFC exosomes reduces ischemic kidney injury via transfer of miR-486-5p targeting PTEN. Exosomes enriched in miR-486-5p could represent a therapeutic tool in acute kidney injury.


Asunto(s)
Lesión Renal Aguda/metabolismo , Exosomas/metabolismo , MicroARNs/metabolismo , Fosfohidrolasa PTEN/metabolismo , Daño por Reperfusión/metabolismo , Animales , Apoptosis , Células Cultivadas , Células Endoteliales/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones
9.
Am J Pathol ; 185(3): 729-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25625676

RESUMEN

Angiotensin-(1-7) is a ligand for the Mas receptor and may protect against tissue injury associated with renin-angiotensin system activation. We determined the effects of endogenous or exogenous angiotensin-(1-7) in mice with unilateral ureteral obstruction (UUO). Mice with UUO were treated with or without the angiotensin-(1-7) antagonist A779 or with 6, 24, or 62 µg/kg per hour exogenous angiotensin-(1-7). After 10 days, kidneys were harvested for histology, immunoblots, and measurement of NADPH oxidase. Compared with controls, A779 treatment significantly increased fibronectin, transforming growth factor-ß, and α-smooth muscle actin expression in obstructed kidneys and enhanced tubulointerstitial injury, apoptosis, and NADPH oxidase. Unexpectedly, administration of angiotensin-(1-7) to mice with UUO caused injury in obstructed kidneys compared with controls and increased macrophage infiltration. In obstructed kidneys from mice with gene deletion of Mas (Mas(-/-)), apoptosis and macrophage infiltration were increased compared with wild-type mice. Angiotensin-(1-7) (but not A779) further increased apoptosis and macrophage influx in obstructed kidneys from Mas(-/-) mice, compared with untreated Mas(-/-) mice. These data indicate that endogenous angiotensin-(1-7) protects against kidney injury in UUO. In mice with or without the Mas receptor, however, delivery of exogenous angiotensin-(1-7) worsens kidney damage. The results suggest dose-dependent effects of angiotensin-(1-7) in the kidney in UUO, with endogenous angiotensin-(1-7) promoting repair pathways via interaction with Mas and higher amounts exacerbating injury.


Asunto(s)
Angiotensina II/análogos & derivados , Angiotensina I/uso terapéutico , Fragmentos de Péptidos/uso terapéutico , Uréter/efectos de los fármacos , Obstrucción Ureteral/tratamiento farmacológico , Actinas/metabolismo , Angiotensina I/antagonistas & inhibidores , Angiotensina I/farmacología , Angiotensina II/farmacología , Angiotensina II/uso terapéutico , Animales , Fibronectinas/metabolismo , Masculino , Ratones , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Uréter/metabolismo , Obstrucción Ureteral/metabolismo
10.
Am J Pathol ; 185(8): 2309-23, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26073035

RESUMEN

The administration of certain progenitor cells is protective in experimental acute kidney injury (AKI), and mechanisms may involve the release of paracrine factors. Endothelial colony-forming cells (ECFCs) are endothelial precursor cells with a high proliferative capacity and pro-angiogenic potential. We examined the effects of human umbilical cord blood-derived ECFCs and their extracellular vesicles in a mouse model of ischemic AKI and in cultured human umbilical vein endothelial cells subjected to hypoxia/reoxygenation. In mice with ischemic AKI, administration of ECFCs (i.v.) at the time of reperfusion significantly attenuated increases in plasma creatinine, tubular necrosis, macrophage infiltration, oxidative stress, and apoptosis, without cell persistence in the kidneys. In cultured human umbilical vein endothelial cells, hypoxia/reoxygenation stimulated apoptosis. This effect was inhibited by incubation with conditioned medium or exosomes (40- to 100-nm diameter) derived from ECFCs, but not by microparticles (100- to 1000-nm diameter) or vesicle-depleted conditioned medium. Administration of exosomes (i.v.) directly to mice with ischemic AKI attenuated renal injury, as assessed by plasma creatinine, tubular necrosis, and apoptosis. Taken together, these studies indicate protective effects of human cord blood-derived ECFCs in experimental AKI and suggest that ECFC-derived exosomes may mediate the protective response via inhibition of endothelial cell apoptosis.


Asunto(s)
Lesión Renal Aguda/prevención & control , Exosomas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Madre/citología , Lesión Renal Aguda/metabolismo , Animales , Proliferación Celular/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Neovascularización Fisiológica/fisiología , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo
11.
Biochim Biophys Acta ; 1842(7): 1028-40, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24662305

RESUMEN

Renal ubiquitin C-terminal hydrolase L1 (UCHL1) is upregulated in a subset of human glomerulopathies, including focal segmental glomerulosclerosis (FSGS), where it may serve to promote ubiquitin pools for degradation of cytotoxic proteins. In the present study, we tested whether UCHL1 is expressed in podocytes of a mouse model of ACTN4-associated FSGS. Podocyte UCHL1 protein was detected in glomeruli of K256E-ACTN4(pod+)/UCHL1+/+ mice. UCHL1+/- mice were intercrossed with K256E-ACTN4(pod+) mice and monitored for features of glomerular disease. 10-week-old K256E-ACTN4(pod+)/UCHL1-/- mice exhibited significantly ameliorated albuminuria, glomerulosclerosis, tubular pathology and blood pressure. Interestingly, while UCHL1 deletion diminished both tubular and glomerular apoptosis, WT1-positive nuclei were unchanged. Finally, UCHL1 levels correlated positively with poly-ubiquitinated proteins but negatively with K256E-α-actinin-4 levels, implying reduced K256E-α-actinin-4 proteolysis in the absence of UCHL1. Our data suggest that UCHL1 upregulation in ACTN4-associated FSGS fuels the proteasome and that UCHL1 deletion may impair proteolysis and thereby preserve K256E/wt-α-actinin-4 heterodimers, maintaining podocyte cytoskeletal integrity and protecting the glomerular filtration barrier.


Asunto(s)
Actinina/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Eliminación de Secuencia , Ubiquitina Tiolesterasa/genética , Actinina/metabolismo , Animales , Citoesqueleto/genética , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Glomeruloesclerosis Focal y Segmentaria/enzimología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomérulos Renales/enzimología , Glomérulos Renales/metabolismo , Ratones , Ratones Noqueados , Podocitos/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Regulación hacia Arriba
12.
J Am Soc Nephrol ; 25(4): 784-97, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24262797

RESUMEN

NADPH oxidase (Nox) enzymes are a significant source of reactive oxygen species, which contribute to glomerular podocyte dysfunction. Although studies have implicated Nox1, -2, and -4 in several glomerulopathies, including diabetic nephropathy, little is known regarding the role of Nox5 in this context. We examined Nox5 expression and regulation in kidney biopsies from diabetic patients, cultured human podocytes, and a novel mouse model. Nox5 expression increased in human diabetic glomeruli compared with nondiabetic glomeruli. Stimulation with angiotensin II upregulated Nox5 expression in human podocyte cultures and increased reactive oxygen species generation. siRNA-mediated Nox5 knockdown inhibited angiotensin II-stimulated production of reactive oxygen species and altered podocyte cytoskeletal dynamics, resulting in an Rac-mediated motile phenotype. Because the Nox5 gene is absent in rodents, we generated transgenic mice expressing human Nox5 in a podocyte-specific manner (Nox5(pod+)). Nox5(pod+) mice exhibited early onset albuminuria, podocyte foot process effacement, and elevated systolic BP. Subjecting Nox5(pod+) mice to streptozotocin-induced diabetes further exacerbated these changes. Our data show that renal Nox5 is upregulated in human diabetic nephropathy and may alter filtration barrier function and systolic BP through the production of reactive oxygen species. These findings provide the first evidence that podocyte Nox5 has an important role in impaired renal function and hypertension.


Asunto(s)
Hipertensión/etiología , Enfermedades Renales/etiología , Proteínas de la Membrana/fisiología , NADPH Oxidasas/fisiología , Podocitos/enzimología , Albuminuria/etiología , Animales , Células Cultivadas , Citoesqueleto/metabolismo , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/etiología , Humanos , Glomérulos Renales/fisiología , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , NADPH Oxidasa 5 , NADPH Oxidasas/genética , Especies Reactivas de Oxígeno/metabolismo
13.
Clin Sci (Lond) ; 124(3): 191-202, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22920224

RESUMEN

Nox (NADPH oxidase)-derived ROS (reactive oxygen species) have been implicated in the development of diabetic nephropathy. Of the Nox isoforms in the kidney, Nox4 is important because of its renal abundance. In the present study, we tested the hypothesis that GKT136901, a Nox1/4 inhibitor, prevents the development of nephropathy in db/db (diabetic) mice. Six groups of male mice (8-week-old) were studied: (i) untreated control db/m, (ii) low-dose GKT136901-treated db/m (30 mg/kg of body weight per day), (iii) high-dose GKT136901-treated db/m (90 mg/kg of body weight per day), (iv) untreated db/db; (v) low dose GKT136901-treated db/db; and (vi) high-dose GKT136901-treated db/db. GKT136901, in chow, was administered for 16 weeks. db/db mice developed diabetes and nephropathy as evidenced by hyperglycaemia, albuminuria and renal injury (mesangial expansion, tubular dystrophy and glomerulosclerosis). GKT136901 treatment had no effect on plasma glucose or BP (blood pressure) in any of the groups. Plasma and urine TBARSs (thiobarbituric acid-reacting substances) levels, markers of systemic and renal oxidative stress, respectively, were increased in diabetic mice. Renal mRNA expression of Nox4, but not of Nox2, increased, Nox1 was barely detectable in db/db. Expression of the antioxidant enzyme SOD-1 (superoxide dismutase 1) decreased in db/db mice. Renal content of fibronectin, pro-collagen, TGFß (transforming growth factor ß) and VCAM-1 (vascular cell adhesion molecule 1) and phosphorylation of ERK1/2 (extracellular-signal-regulated kinase 1/2) were augmented in db/db kidneys, with no change in p38 MAPK (mitogen-activated protein kinase) and JNK (c-Jun N-terminal kinase). Treatment reduced albuminuria, TBARS and renal ERK1/2 phosphorylation and preserved renal structure in diabetic mice. Our findings suggest a renoprotective effect of the Nox1/4 inhibitor, possibly through reduced oxidative damage and decreased ERK1/2 activation. These phenomena occur independently of improved glucose control, suggesting GKT136901-sensitive targets are involved in complications of diabetes rather than in the disease process.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/prevención & control , NADPH Oxidasas/antagonistas & inhibidores , Pirazoles/farmacología , Piridonas/farmacología , Albuminuria/prevención & control , Albuminuria/orina , Animales , Glucemia/análisis , Presión Sanguínea/efectos de los fármacos , Western Blotting , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/orina , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasa 1 , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Factor de Crecimiento Transformador beta/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
14.
PLoS One ; 18(12): e0295284, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055691

RESUMEN

Canagliflozin (CANA) is a sodium-glucose cotransporter 2 (SGLT2) inhibitor with blood glucose lowering effects. CANA also promotes kidney protection in patients with cardiovascular diseases and type 2 diabetes (T2D), as well as in normoglycemic patients with hypertension or heart failure. Clinical studies, although conduct in both sexes, do not report sex-dependent differences in T2DM treated with CANA. However, the impact of CANA in type 1 diabetes, as well in sex-dependent outcomes in such cohort needs further understanding. To analyze the effects of CANA in mice with combined hypertension and type 1 diabetes, diabetes was induced by STZ injection (5 days, 50mg/kg/day) in both male and female 8 weeks old genetic hypertensive mice (Lin), whereas the control (Lin) received 0.1M sodium citrate injections. 8 weeks after STZ. Mice were fed either regular or CANA-infused diet for 4 weeks. 8 weeks after STZ, hyperglycemia was present in both male and female mice. CANA reversed BG increase mice fed regular diet. Male LinSTZ mice had elevated water intake, urine output, urinary albumin to creatinine ratio (ACR), kidney lesion score, and creatinine clearance compared to the Lin control group. Kidney injury was improved in male LinSTZ + CANA group in male mice. Water intake and urine output were not statistically significantly different in female LinSTZ compared to female LinSTZ+ CANA. Moreover, CANA did not improve kidney injury in female mice, showing no effect in creatinine clearance, lesion score and fibrosis when compared to LinSTZ fed regular diet. Here we show that Canagliflozin might exert different kidney protection effects in male compared to female mice with hypertension and type 1 diabetes. Sex-dimorphisms were previously found in the pathophysiology of diabetes induced by STZ. Therefore, we highlight the importance of in-depth investigation on sex-dependent effects of CANA, taking in consideration the unique characteristics of disease progression for each sex.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hipertensión , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Masculino , Femenino , Animales , Ratones , Canagliflozina/farmacología , Canagliflozina/uso terapéutico , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Creatinina , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Riñón
15.
PLoS One ; 18(2): e0281123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730247

RESUMEN

Chronic kidney disease (CKD) is a worldwide health burden with increases risk of end-stage renal function if left untreated. CKD induced in the context of metabolic syndrome (MS) increases risks of hypertension, hyperglycemia, excess body fat and dyslipidemia. To test if combining a high-fat diet (HFD) regimen onto the hypertensive/ diabetic phenotype would mimic features of MS induced-CKD in mice, hyperglycemia was induced in genetically hypertensive mice (Lin), followed by HFD regimen. For that, 8-week-old male were subjected to streptozotocin (STZ) intraperitoneal (i.p.) injections (50 mg/kg, 5 days consecutive). LinSTZ were fed a 60% kCal HFD for 8 weeks. Lin mice treated with STZ developed polydipsia, became hypertensive and hyperglycemic. HFD induced weight gain, protected against glomerular hypertrophy, scarring, and albuminuria at endpoint compared to regular diet fed LinSTZ. On the other hand, HFD induced steatosis, liver fibrosis, inflammation, and increase in AST/ALT ratio, characteristics of non-alcoholic liver disease. Taken together, our results show that LinSTZ mice fed a HFD did not lead to a more robust model of MS-induced CKD, protected against kidney injury, but inducing liver damage. More studies are necessary to understand the kidney protective mechanisms of HFD when superimposed with hypertension and type 1 diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Hipertensión , Insuficiencia Renal Crónica , Ratones , Masculino , Animales , Dieta Alta en Grasa/efectos adversos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/inducido químicamente , Riñón/fisiología , Hígado , Hipertensión/complicaciones , Ratones Endogámicos C57BL
16.
Front Immunol ; 14: 1104550, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033997

RESUMEN

Polycystic ovarian syndrome (PCOS) is associated with hyperandrogenemia and ovarian antral follicle growth arrest. We have previously demonstrated that androgen-induced exosomal release of miR-379-5p (miR379) from preantral follicle granulosa cells increases the proliferation of target cells via phosphoinositide-dependent kinase 1 (PDK1) upregulation. Androgen also increases inflammatory M1 macrophage abundance, but reduces anti-inflammatory M2 polarization in rat antral and preovulatory follicles. However, the role of small extracellular vesicles (sEVs; also known as exosomes) secretion in determining the cellular content and function of miRNAs in exosome-receiving cells is largely unknown. Our objectives were to determine: 1) the regulatory role of granulosa cells (GC)-derived exosomal miR379 on macrophage polarization and ovarian inflammation; 2) whether miR379-induced M1 polarization regulates GC proliferation; and 3) if this regulated process is follicular stage-specific. Compared with non-PCOS subjects, PCOS subjects had a higher M1/M2 ratio, supporting the concept that PCOS is an inflammatory condition. Ovarian overexpression of miR379 increased the number of M1 macrophages and the M1/M2 ratio in preantral follicles specifically. Transfection of macrophages with a miR379 mimic reduced the cellular content of PDK1 and induced M0→M1 polarization; whereas its inhibitor polarized M0→M2. Conditioned media from macrophages transfected with miR379 mimic and follicular fluid from PCOS subjects had higher galectin-3 content, a pro-inflammatory cytokine which specifically suppresses human antral follicle GC proliferation. These results indicate that miR379 inhibits M2 macrophage polarization, a condition which suppresses GC proliferation in a follicle stage-dependent manner, as exhibited in PCOS.


Asunto(s)
MicroARNs , Síndrome del Ovario Poliquístico , Femenino , Humanos , Ratas , Animales , Síndrome del Ovario Poliquístico/genética , Andrógenos , Células de la Granulosa , MicroARNs/genética , Macrófagos
17.
J Ovarian Res ; 16(1): 74, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046285

RESUMEN

Polycystic ovarian syndrome (PCOS) is a complex multi-factorial syndrome associated with androgen excess and anovulatory infertility. In the current study, we investigated the role of dihydrotestosterone-induced exosomal miR-379-5p release in determining the destiny of the developing follicles. Our hypothesis was that androgen regulates granulosa cell miR-379-5p content by facilitating its exosomal release in a follicular-stage dependent manner, a process which determines granulosa cell fate. Compared to human non-PCOS subjects, individuals with PCOS exhibit higher follicular fluid free testosterone levels, lower exosomal miR-379-5p content and granulosa cell proliferation. Androgenized rats exhibited lower granulosa cell miR-379-5p but higher phosphoinositide-dependent kinase-1 (PDK1; a miR-379-5p target) content and proliferation. Androgen reduced granulosa cell miR-379-5p content by increasing its exosomal release in preantral follicles, but not in antral follicles in vitro. Studies with an exosomal release inhibitor confirmed that androgen-induced exosomal miR-379-5p release decreased granulosa cell miR-379-5p content and proliferation. Ovarian overexpression of miR-379-5p suppressed granulosa cell proliferation, and basal and androgen-induced preantral follicle growth in vivo. These findings suggest that increased exosomal miR-379-5p release in granulosa cells is a proliferative response to androgenic stimulation specific for the preantral stage of follicle development and that dysregulation of this response at the antral stage is associated with follicular growth arrest, as observed in human PCOS.


Asunto(s)
MicroARNs , Síndrome del Ovario Poliquístico , Femenino , Humanos , Ratas , Animales , Andrógenos/farmacología , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/genética , Células de la Granulosa , MicroARNs/genética
18.
Kidney Int ; 82(3): 292-303, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22475818

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) degrades angiotensin II to angiotensin-(1-7) and is expressed in podocytes. Here we overexpressed ACE2 in podocytes in experimental diabetic nephropathy using transgenic methods where a nephrin promoter drove the expression of human ACE2. Glomeruli from these mice had significantly increased mRNA, protein, and activity of ACE2 compared to wild-type mice. Male mice were treated with streptozotocin to induce diabetes. After 16 weeks, there was no significant difference in plasma glucose levels between wild-type and transgenic diabetic mice. Urinary albumin was significantly increased in wild-type diabetic mice at 4 weeks, whereas albuminuria in transgenic diabetic mice did not differ from wild-type nondiabetic mice. However, this effect was transient and by 16 weeks both transgenic and nontransgenic diabetic mice had similar rates of proteinuria. Compared to wild-type diabetic mice, transgenic diabetic mice had an attenuated increase in mesangial area, decreased glomerular area, and a blunted decrease in nephrin expression. Podocyte numbers decreased in wild-type diabetic mice at 16 weeks, but were unaffected in transgenic diabetic mice. At 8 weeks, kidney cortical expression of transforming growth factor-ß1 was significantly inhibited in transgenic diabetic mice as compared to wild-type diabetic mice. Thus, the podocyte-specific overexpression of human ACE2 transiently attenuates the development of diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/enzimología , Nefropatías Diabéticas/genética , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Podocitos/enzimología , Enzima Convertidora de Angiotensina 2 , Animales , Presión Sanguínea , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Tasa de Filtración Glomerular , Mesangio Glomerular/enzimología , Mesangio Glomerular/patología , Humanos , Masculino , Ratones , Ratones Transgénicos , Podocitos/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba
19.
Nephrol Dial Transplant ; 27(10): 3781-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22561581

RESUMEN

BACKGROUND: Acute kidney injury (AKI) in humans has few therapeutic options. In experimental models, administration of progenitor cells facilitates recovery from AKI. Human umbilical cord-derived CD133(+) progenitor cells promote endothelial repair in ischemic limb, heart and brain tissue. METHODS: We examined the effects of human CD133(+) progenitor cells in bilateral ischemia-reperfusion (I/R) kidney injury in non-obese diabetic severe combined immunodeficient mice. CD133(+) cells from human cord blood were injected intravenously at the time of reperfusion and the extent of injury was determined by plasma biochemistry and kidney histology. RESULTS: In mice with I/R, fluorescently labeled CD133(+) cells were detected in blood 2 min after injection but decreased rapidly thereafter with no evidence of homing to the kidneys. In mice subjected to I/R, CD133(+) cells significantly increased plasma urea and Cr at 24 h compared to vehicle- or CD133(-) cell-treated mice. CD133(+) cells exacerbated tubular necrosis and apoptosis, increased plasma tumor necrosis factor-α and increased kidney neutrophil infiltration. In contrast, CD133(+) cells did not affect tubular cell proliferation. Administration of CD133(+) cells to FVB/N mice post-I/R also augmented kidney injury. CONCLUSIONS: These data indicate that human cord blood-derived CD133(+) cells unexpectedly exacerbate ischemic AKI in mice, possibly through soluble factors. Our study highlights the importance of caution in cell-based therapies for human AKI.


Asunto(s)
Lesión Renal Aguda/terapia , Trasplante de Células Madre de Sangre del Cordón Umbilical/efectos adversos , Antígeno AC133 , Lesión Renal Aguda/patología , Animales , Antígenos CD/sangre , Apoptosis , Proliferación Celular , Citocinas/sangre , Sangre Fetal/citología , Sangre Fetal/inmunología , Glicoproteínas/sangre , Humanos , Mediadores de Inflamación/sangre , Riñón/irrigación sanguínea , Riñón/enzimología , Riñón/patología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neutrófilos/patología , Péptidos/sangre , Peroxidasa/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/terapia , Trasplante Heterólogo
20.
PLoS One ; 17(2): e0264136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176122

RESUMEN

Current research on hypertension utilizes more than fifty animal models that rely mainly on stable increases in systolic blood pressure. In experimental hypertension, grading or scoring of glomerulopathy in the majority of studies is based on a wide range of opinion-based histological changes that do not necessarily comply with lesional descriptors for glomerular injury that are well-established in clinical pathology. Here, we provide a critical appraisal of experimental hypertensive glomerulopathy with the same approach used to assess hypertensive glomerulopathy in humans. Four hypertensive models with varying pathogenesis were analyzed-chronic angiotensin II infused mice, mice expressing active human renin in the liver (TTRhRen), spontaneously hypertensive rats (SHR), and Goldblatt two-kidney one-clip rats (2K1C). Analysis of glomerulopathy utilized the same criteria applied in humans-hyalinosis, focal segmental glomerulosclerosis (FSGS), ischemic, hypertrophic and solidified glomeruli, or global glomerulosclerosis (GGS). Data from animal models were compared to human reference values. Kidneys in TTRhRen mice, SHR and the nonclipped kidneys in 2K1C rats had no sign of hyalinosis, FSGS or GGS. Glomerulopathy in these groups was limited to variations in mesangial and capillary compartment volumes, with mild increases in collagen deposition. Histopathology in angiotensin II infused mice corresponded to mesangioproliferative glomerulonephritis, but not hypertensive glomerulosclerosis. The number of nephrons was significantly reduced in TTRhRen mice and SHR, but did not correlate with severity of glomerulopathy. The most substantial human-like glomerulosclerotic lesions, including FSGS, ischemic obsolescent glomeruli and GGS, were found in the clipped kidneys of 2K1C rats. The comparison of affected kidneys to healthy control in animals produces lesion values that are numerically impressive but correspond to mild damage if compared to humans. Animal studies should be standardized by employing the criteria and classifications established in human pathology to make experimental and human data fully comparable for comprehensive analysis and model improvements.


Asunto(s)
Angiotensina II/toxicidad , Modelos Animales de Enfermedad , Glomeruloesclerosis Focal y Segmentaria/patología , Hipertensión Renal/patología , Hipertensión/complicaciones , Nefritis/patología , Nefroesclerosis/patología , Animales , Glomeruloesclerosis Focal y Segmentaria/etiología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Hipertensión/inducido químicamente , Hipertensión Renal/etiología , Hipertensión Renal/metabolismo , Masculino , Nefritis/etiología , Nefritis/metabolismo , Nefroesclerosis/etiología , Nefroesclerosis/metabolismo , Ratas , Ratas Endogámicas SHR , Vasoconstrictores/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA