Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(28): 16356-16362, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32591422

RESUMEN

Phytochromes are a diverse family of bilin-binding photoreceptors that regulate a wide range of physiological processes. Their photochemical properties make them attractive for applications in optogenetics and superresolution microscopy. Phytochromes undergo reversible photoconversion triggered by the Z ⇄ E photoisomerization about the double bond in the bilin chromophore. However, it is not fully understood at the molecular level how the protein framework facilitates the complex photoisomerization dynamics. We have studied a single-domain bilin-binding photoreceptor All2699g1 (Nostoc sp. PCC 7120) that exhibits photoconversion between the red light-absorbing (Pr) and far red-absorbing (Pfr) states just like canonical phytochromes. We present the crystal structure and examine the photoisomerization mechanism of the Pr form as well as the formation of the primary photoproduct Lumi-R using time-resolved spectroscopy and hybrid quantum mechanics/molecular mechanics simulations. We show that the unusually long excited state lifetime (broad lifetime distribution centered at ∼300 picoseconds) is due to the interactions between the isomerizing pyrrole ring D and an adjacent conserved Tyr142. The decay kinetics shows a strongly distributed character which is imposed by the nonexponential protein dynamics. Our findings offer a mechanistic insight into how the quantum efficiency of the bilin photoisomerization is tuned by the protein environment, thereby providing a structural framework for engineering bilin-based optical agents for imaging and optogenetics applications.


Asunto(s)
Fitocromo/química , Fitocromo/metabolismo , Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Cristalografía por Rayos X , Isomerismo , Cinética , Modelos Moleculares , Nostoc/metabolismo , Procesos Fotoquímicos , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Conformación Proteica , Análisis Espectral , Relación Estructura-Actividad
2.
Photochem Photobiol Sci ; 18(10): 2484-2496, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31418445

RESUMEN

The light-driven conversions between the dark-adapted and the photoproduct state were recorded for bacteriophytochromes (BphP) carrying biliverdin IXα (BV) as chromophore by time-resolved absorption spectroscopy. BphPs can be photoswitched between a red absorbing (Pr, maximum at ca. 700 nm) and a far-red/near-infrared (Pfr, maximum at ca. 750 nm) absorbing state, thereby showing a considerable red-shift with respect to plant phytochromes. Representatives for BphPs studied here are: PstBphP1 from Pseudomonas syringae pv. tomato, for which Pfr is the photoproduct; the bathy-phytochrome PaBphP from Pseudomonas aeruginosa for which instead Pfr is the thermally stable parental state. The third BphP-like protein was FphA from the fungus Aspergillus nidulans, a eukaryotic protein also carrying BV as a chromophore, for which Pr is considered to be the dark-adapted state. All three BphPs show a canonical modular arrangement with a three-domain photosensory module (PAS-GAF-PHY) and a histidine-kinase (HK) signalling domain. The quantum yields for Pr-to-Pfr photoconversion are in the range 0.02-0.12, and 0.04-0.08 for the Pfr-to-Pr route. Photoproducts of both bacterial phytochromes thermally recovered in the dark, whereas for the fungal protein (FphA) both Pr and Pfr forms are thermally stable for days and could be interconverted only by selective irradiation. The photoinduced reactions of all three BV-phytochromes are in general kinetically less complex than those of plant phytochromes, with the notable exception of the Pr-to-Pfr route for PstBphP1. By contrast in the Pfr-to-Pr conversion of FphAN753 the final product is already formed during the very early steps of the process, without formation of any further intermediates: to our knowledge it is the first phytochrome showing this behavior. All three proteins investigated are weakly fluorescent in the Pr form, with a maximum fluorescence quantum yield of 0.02 (PaBphP), and have undetectable fluorescence in the Pfr state.

3.
J Biol Chem ; 289(37): 25590-600, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25012656

RESUMEN

Phytochromes are photoreceptors using a bilin tetrapyrrole as chromophore, which switch in canonical phytochromes between red (Pr) and far red (Pfr) light-absorbing states. Cph2 from Synechocystis sp., a noncanonical phytochrome, harbors besides a cyanobacteriochrome domain a second photosensory module, a Pr/Pfr-interconverting GAF-GAF bidomain (SynCph2(1-2)). As in the canonical phytochromes, a unique motif of the second GAF domain, the tongue region, seals the bilin-binding site in the GAF1 domain from solvent access. Time-resolved spectroscopy of the SynCph2(1-2) module shows four intermediates during Pr → Pfr phototransformation and three intermediates during Pfr → Pr back-conversion. A mutation in the tongue's conserved PRXSF motif, S385A, affects the formation of late intermediate R3 and of a Pfr-like state but not the back-conversion to Pr via a lumi-F-like state. In contrast, a mutation in the likewise conserved WXE motif, W389A, changes the photocycle at intermediate R2 and causes an alternative red light-adapted state. Here, back-conversion to Pr proceeds via intermediates differing from SynCph2(1-2). Replacement of this tryptophan that is ∼15 Šdistant from the chromophore by another aromatic amino acid, W389F, restores native Pr → Pfr phototransformation. These results indicate large scale conformational changes within the tongue region of GAF2 during the final processes of phototransformation. We propose that in early intermediates only the chromophore and its nearest surroundings are altered, whereas late changes during R2 formation depend on the distant WXE motifs of the tongue region. Ser-385 within the PRXSF motif affects only late intermediate R3, when refolding of the tongue and docking to the GAF1 domain are almost completed.


Asunto(s)
Secuencias de Aminoácidos , Proteínas Bacterianas/metabolismo , Fotorreceptores Microbianos/metabolismo , Fitocromo/metabolismo , Synechocystis/química , Proteínas Bacterianas/química , Pigmentos Biliares/química , Pigmentos Biliares/genética , Pigmentos Biliares/metabolismo , Sitios de Unión , Luz , Mutación , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fitocromo/química , Estructura Terciaria de Proteína/genética , Serina/química , Synechocystis/metabolismo , Triptófano/química , Triptófano/metabolismo
4.
Chembiochem ; 15(8): 1190-9, 2014 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-24764310

RESUMEN

The gene slr1393 from Synechocystis sp. PCC6803 encodes a protein composed of three GAF domains, a PAS domain, and a histidine kinase domain. GAF3 is the sole domain able to bind phycocyanobilin (PCB) as chromophore and to accomplish photochemistry: switching between a red-absorbing parental and a green-absorbing photoproduct state (λmax =649 and 536 nm, respectively). Conversions in both directions were followed by time-resolved absorption spectroscopy with the separately expressed GAF3 domain of Slr1393. Global fit analysis of the recorded absorbance changes yielded three lifetimes (3.2 µs, 390 µs, and 1.5 ms) for the red-to-green conversion, and 1.2 µs, 340 µs, and 1 ms for the green-to-red conversion. In addition to the wild-type (WT) protein, 24 mutated proteins were studied spectroscopically. The design of these site-directed mutations was based on sequence alignments with related proteins and by employing the crystal structure of AnPixJg2 (PDB ID: 3W2Z), a Slr1393 orthologous from Anabaena sp. PCC7120. The structure of AnPixJg2 was also used as template for model building, thus confirming the strong structural similarity between the proteins, and for identifying amino acids to target for mutagenesis. Only amino acids in close proximity to the chromophore were exchanged, as these were considered likely to have an impact on the spectral and dynamic properties. Three groups of mutants were found: some showed absorption features similar to the WT protein, a second group showed modified absorbance properties, and the third group had lost the ability to bind the chromophore. The most unexpected result was obtained for the exchange at residue 532 (N532Y). In vivo assembly yielded a red-absorbing, WT-like protein. Irradiation, however, not only converted it into the green-absorbing form, but also produced a 660 nm, further-red-shifted absorbance band. This photoproduct was fully reversible to the parental form upon green light irradiation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Synechocystis/química , Proteínas Bacterianas/genética , Histidina Quinasa , Cinética , Modelos Moleculares , Conformación Molecular , Mutagénesis Sitio-Dirigida , Ficobilinas/química , Ficocianina/química , Proteínas Quinasas/química , Estructura Terciaria de Proteína
5.
Biol Chem ; 394(11): 1517-28, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23828427

RESUMEN

Flavin-binding light, oxygen, and voltage (LOV) domains are UVA/blue-light-sensing protein units that form a reversible flavin mononucleotide-cysteine adduct upon light induction. In their dark-adapted state, LOV domains exhibit the typical spectral features of fully oxidized riboflavin derivatives. A survey on the absorption spectra of various LOV domains revealed that the UVA spectral range is the most variable region (whereas the absorption band at 450 nm is virtually unchanged), showing essentially two distinct patterns found in plant phototropin LOV1 and LOV2 domains, respectively. In this work, we have identified a residue directly interacting with the isoalloxazine methyl group at C(7a) as the major UVA spectral tuner. In YtvA from Bacillus subtilis, this amino acid is threonine 30, and its mutation into apolar residues converts the LOV2-like spectrum of native YtvA into a LOV1-like pattern. Mutation T30A also accelerates the photocycle ca. 4-fold. Together with control mutations at different positions, our results experimentally confirm the previously calculated direction of the transition dipole moment for the UVA ππ* state and identify the mechanisms underlying spectral tuning in the LOV domains.


Asunto(s)
Secuencias de Aminoácidos , Mononucleótido de Flavina/química , Fotorreceptores Microbianos/química , Rayos Ultravioleta , Secuencias de Aminoácidos/genética , Secuencia Conservada/genética , Mononucleótido de Flavina/genética , Flavinas/química , Rayos Láser , Microscopía Fluorescente , Mutación , Neurospora crassa/química , Técnicas Fotoacústicas , Fotoquímica , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia , Rayos Ultravioleta/efectos adversos
6.
Photochem Photobiol ; 91(5): 1123-32, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26172037

RESUMEN

The blue-light (BL) absorbing protein Xcc-LOV from Xanthomonas citri subsp. citri is composed of a LOV-domain, a histidine kinase (HK) and a response regulator. Spectroscopic characterization of Xcc-LOV identified intermediates and kinetics of the protein's photocycle. Measurements of steady state and time-resolved fluorescence allowed determination of quantum yields for triplet (ΦT  = 0.68 ± 0.03) and photoproduct formation (Φ390  = 0.46 ± 0.05). The lifetime for triplet decay was determined as τT  = 2.4-2.8 µs. Fluorescence of tryptophan and tyrosine residues was unchanged upon light-to-dark conversion, emphasizing the absence of significant conformational changes. Photochemistry was blocked upon cysteine C76 (C76S) mutation, causing a seven-fold longer lifetime of the triplet state (τT  = 16-18.5 µs). Optoacoustic spectroscopy yielded the energy content of the triplet state. Interestingly, Xcc-LOV did not undergo the volume contraction reported for other LOV domains within the observation time window, although the back-conversion into the dark state was accompanied by a volume expansion. A radioactivity-based enzyme function assay revealed a larger HK activity in the lit than in the dark state. The C76S mutant showed a still lower enzyme function, indicating the dark state activity being corrupted by a remaining portion of the long-lived lit state.


Asunto(s)
Luz , Fotorreceptores Microbianos/metabolismo , Proteínas Quinasas/fisiología , Xanthomonas/fisiología , Histidina Quinasa , Oxígeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA