Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Acta Neuropathol ; 133(2): 303-319, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27888296

RESUMEN

Inflammation is likely a key contributor to the pathogenesis of Parkinson's disease (PD), a progressively debilitating neurodegenerative disease that is accompanied by a pathological accumulation of the α-synuclein protein in a staged manner through the brain. What leads to the accumulation of α-synuclein in PD and how this relates to inflammatory pathways, however, is not entirely clear. Toll-like receptor (TLR) signaling is a major pathway mediating inflammation and, in particular, TLR2 is increasingly being implicated in PD. We have, therefore, examined the expression of TLR2 in postmortem brain tissue from PD patients and matched controls. We confirm that TLR2 is increased in PD brain, and find that levels of TLR2 correlate with the accumulation of pathological α-synuclein. TLR2 was expressed on neurons as well as microglia; however, the neuronal rather than glial expression of TLR2 was significantly increased in PD brain in accordance with disease staging, and TLR2 was strongly localized to α-synuclein positive Lewy bodies. In cell culture, activation of neuronal TLR2 induced an inflammatory response, including the secretion of inflammatory cytokines and microglial-activating chemokines, as well as the production of reactive oxygen species. Moreover, activation of neuronal TLR2 increased levels of endogenous α-synuclein protein, which was in turn associated with increased levels of the autophagy/lysosomal pathway marker p62. Finally, promoting autophagy with rapamycin or pharmacological inhibition of the TLR2 signaling pathway prevented the TLR2-mediated increase in α-synuclein in neuronal cell cultures. These results implicate neuronal TLR2 expression in human PD pathogenesis. In particular, the increased expression of TLR2 on neurons may provide new insight into disease pathogenesis and/or options for therapeutic intervention.


Asunto(s)
Encéfalo/inmunología , Encéfalo/patología , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/patología , Receptor Toll-Like 2/metabolismo , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Femenino , Humanos , Inflamación/inmunología , Inflamación/patología , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
2.
Mov Disord ; 32(3): 423-432, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27911006

RESUMEN

BACKGROUND: Leucine rich repeat kinase 2 (LRRK2) is a promising target for the treatment of Parkinson's disease; however, little is known about the expression of LRRK2 in human brain and if/how LRRK2 protein levels are altered in Parkinson's disease. OBJECTIVES: We measured the protein levels of LRRK2 as well as its phosphorylation on serines 910, 935, and 973 in the postmortem brain tissue of Parkinson's disease patients and aged controls with and without Lewy bodies. METHODS: LRRK2 and its phosphorylation were measured by immunoblot in brain regions differentially affected in Parkinson's disease (n = 30) as well as subjects with Lewy bodies restricted to the periphery and lower brain stem (n = 25) and matched controls without pathology (n = 25). RESULTS: LRRK2 levels were increased in cases with restricted Lewy bodies, with a 30% increase measured in the substantia nigra. In clinical Parkinson's disease, levels of LRRK2 negatively correlated to disease duration and were comparable with controls. LRRK2 phosphorylation, however, particularly at serine 935, was reduced with clinical Parkinson's disease with a 36% reduction measured in the substantia nigra. CONCLUSIONS: Our data show that LRRK2 phosphorylation is reduced with clinical PD, whereas LRRK2 expression is increased in early potential prodromal stages. These results contribute to a better understanding of the role of LRRK2 in idiopathic Parkinson's disease and may aid efforts aimed at therapeutically targeting the LRRK2 protein. © 2016 International Parkinson and Movement Disorder Society.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Corteza Cerebral/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Factores de Edad , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología
3.
Hum Mol Genet ; 23(11): 2858-79, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24412932

RESUMEN

Increasing evidence suggests that the c-Abl protein tyrosine kinase could play a role in the pathogenesis of Parkinson's disease (PD) and other neurodegenerative disorders. c-Abl has been shown to regulate the degradation of two proteins implicated in the pathogenesis of PD, parkin and α-synuclein (α-syn). The inhibition of parkin's neuroprotective functions is regulated by c-Abl-mediated phosphorylation of parkin. However, the molecular mechanisms by which c-Abl activity regulates α-syn toxicity and clearance remain unknown. Herein, using NMR spectroscopy, mass spectrometry, in vitro enzymatic assays and cell-based studies, we established that α-syn is a bona fide substrate for c-Abl. In vitro studies demonstrate that c-Abl directly interacts with α-syn and catalyzes its phosphorylation mainly at tyrosine 39 (pY39) and to a lesser extent at tyrosine 125 (pY125). Analysis of human brain tissues showed that pY39 α-syn is detected in the brains of healthy individuals and those with PD. However, only c-Abl protein levels were found to be upregulated in PD brains. Interestingly, nilotinib, a specific inhibitor of c-Abl kinase activity, induces α-syn protein degradation via the autophagy and proteasome pathways, whereas the overexpression of α-syn in the rat midbrains enhances c-Abl expression. Together, these data suggest that changes in c-Abl expression, activation and/or c-Abl-mediated phosphorylation of Y39 play a role in regulating α-syn clearance and contribute to the pathogenesis of PD.


Asunto(s)
Enfermedad de Parkinson/enzimología , Proteínas Proto-Oncogénicas c-abl/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/enzimología , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fosforilación , Proteolisis , Proteínas Proto-Oncogénicas c-abl/genética , alfa-Sinucleína/genética
4.
Mov Disord ; 30(12): 1639-47, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25594542

RESUMEN

Lysosomes are the primary catabolic compartment for the degradation of intracellular proteins through autophagy. The presence of abnormal intracellular α-synuclein-positive aggregates in Parkinson's disease (PD) indicates that the degradative capacity of lysosomes is impaired in PD. Specific dysfunction of chaperone-mediated autophagy (CMA) in PD is suggested by reductions in the CMA membrane receptor, lysosomal-associated membrane protein (LAMP) 2A, although whether LAMP2A is the only LAMP2 isoform affected by PD is unknown. Messenger RNA (mRNA) and protein expression of all three LAMP2 isoforms was assessed in brain extracts from regions with and without PD-related increases in α-synuclein in autopsy samples from subjects in the early pathological stage of PD (n = 9), compared to age- and postmortem delay-matched controls (n = 10). In the early stages of PD, mRNA expression of all LAMP2 isoforms was not different from controls, with LAMP2B and LAMP2C protein levels also unchanged in PD. The selective loss of LAMP2A protein directly correlated with the increased levels of α-synuclein and decreased levels of the CMA chaperone heat shock cognate protein 70 in the same PD samples, as well as with the accumulation of cytosolic CMA substrate proteins. Our data show that LAMP2 protein isoforms are differentially affected in the early stages of PD, with LAMP2A selectively reduced in association with increased α-synuclein, and suggests that dysregulation of CMA-mediated protein degradation occurs before substantial α-synuclein aggregation in PD.


Asunto(s)
Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Isoformas de Proteínas/metabolismo , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Colesterol/metabolismo , Femenino , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Metabolismo de los Lípidos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Masculino , Persona de Mediana Edad , Isoformas de Proteínas/genética , ARN Mensajero/metabolismo , Estadísticas no Paramétricas , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
5.
Brain ; 137(Pt 3): 834-48, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24477431

RESUMEN

Heterozygous mutations in GBA1, the gene encoding lysosomal glucocerebrosidase, are the most frequent known genetic risk factor for Parkinson's disease. Reduced glucocerebrosidase and α-synuclein accumulation are directly related in cell models of Parkinson's disease. We investigated relationships between Parkinson's disease-specific glucocerebrosidase deficits, glucocerebrosidase-related pathways, and α-synuclein levels in brain tissue from subjects with sporadic Parkinson's disease without GBA1 mutations. Brain regions with and without a Parkinson's disease-related increase in α-synuclein levels were assessed in autopsy samples from subjects with sporadic Parkinson's disease (n = 19) and age- and post-mortem delay-matched controls (n = 10). Levels of glucocerebrosidase, α-synuclein and related lysosomal and autophagic proteins were assessed by western blotting. Glucocerebrosidase enzyme activity was measured using a fluorimetric assay, and glucocerebrosidase and α-synuclein messenger RNA expression determined by quantitative polymerase chain reaction. Related sphingolipids were analysed by mass spectrometry. Multivariate statistical analyses were performed to identify differences between disease groups and regions, with non-parametric correlations used to identify relationships between variables. Glucocerebrosidase protein levels and enzyme activity were selectively reduced in the early stages of Parkinson's disease in regions with increased α-synuclein levels although limited inclusion formation, whereas GBA1 messenger RNA expression was non-selectively reduced in Parkinson's disease. The selective loss of lysosomal glucocerebrosidase was directly related to reduced lysosomal chaperone-mediated autophagy, increased α-synuclein and decreased ceramide. Glucocerebrosidase deficits in sporadic Parkinson's disease are related to the abnormal accumulation of α-synuclein and are associated with substantial alterations in lysosomal chaperone-mediated autophagy pathways and lipid metabolism. Our data suggest that the early selective Parkinson's disease changes are likely a result of the redistribution of cellular membrane proteins leading to a chronic reduction in lysosome function in brain regions vulnerable to Parkinson's disease pathology.


Asunto(s)
Glucosilceramidasa/antagonistas & inhibidores , Enfermedad de Parkinson/metabolismo , Regulación hacia Arriba/fisiología , alfa-Sinucleína/biosíntesis , Anciano , Anciano de 80 o más Años , Autofagia/fisiología , Encéfalo/enzimología , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Lisosomas/enzimología , Masculino , Chaperonas Moleculares/fisiología , Mutación/genética , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo
6.
Neurobiol Dis ; 63: 171-83, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24361600

RESUMEN

Multiple system atrophy is a progressive, neurodegenerative disease characterized by parkinsonism, ataxia, autonomic dysfunction, and accumulation of α-synuclein in oligodendrocytes. To understand how α-synuclein aggregates impact oligodendroglial homeostasis, we investigated an oligodendroglial cell model of α-synuclein dependent degeneration and identified responses linked to the NF-κB transcription factor stress system. Coexpression of human α-synuclein and the oligodendroglial protein p25α increased the expression of IκBα mRNA and protein early during the degenerative process and this was dependent on both aggregation and Ser129 phosphorylation of α-synuclein. This response was prodegenerative because blocking IκBα expression by siRNA rescued the cells. IκBα is an inhibitor of NF-κB and acts by binding and retaining NF-κB p65 in the cytoplasm. The protection obtained by silencing IκBα was accompanied by a strong increase in nuclear p65 translocation indicating that NF-κB activation protects against α-synuclein aggregate stress. In the cellular model, two different phenotypes were observed; degenerating cells retracting their microtubules and resilient cells tolerating the coexpression of α-synuclein and p25α. The resilient cells displayed a significant higher nuclear translocation of p65 and activation of the NF-κB system relied on stress elicited by aggregated and Ser129 phosphorylated α-synuclein. To validate the relationship between oligodendroglial α-synuclein expression and IκBα, we analyzed two different lines of transgenic mice expressing human α-synuclein under the control of the oligodendrocytic MBP promotor (intermediate-expresser line 1 and high-expresser line 29). IκBα mRNA expression was increased in both lines and immunofluorescence microscopy and in situ hybridization revealed that IκBα mRNA and protein is expressed in oligodendrocytes. IκBα mRNA expression was demonstrated prior to activation of microglia and astrocytes in line 1. Human brain tissue affected by MSA displayed increased expression of IκBα and NF-κB p65 in some oligodendrocytes containing glial cytoplasmic inclusions. Our data suggest that oligodendroglial IκBα expression and NF-κB are activated early in the course of MSA and their balance contributes to the decision of cellular demise. Favoring oligodendroglial NF-κB activation may represent a therapeutic strategy for this devastating disease.


Asunto(s)
Encéfalo/patología , Proteínas I-kappa B/metabolismo , Atrofia de Múltiples Sistemas/patología , Oligodendroglía/metabolismo , alfa-Sinucleína/metabolismo , Animales , Encéfalo/citología , Células Cultivadas , Regulación de la Expresión Génica/genética , Humanos , Ratones Transgénicos , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Inhibidor NF-kappaB alfa , Proteínas del Tejido Nervioso/metabolismo , Neuroglía , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfotransferasas/metabolismo , Transporte de Proteínas/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Transfección , alfa-Sinucleína/genética
7.
PLoS One ; 9(1): e87119, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24475238

RESUMEN

Iron misregulation is a central component in the neuropathology of Parkinson's disease. The iron transport protein DMT1 is known to be increased in Parkinson's brains linking functional transport mechanisms with iron accumulation. The regulation of DMT1 is therefore critical to the management of iron uptake in the disease setting. We previously identified post-translational control of DMT1 levels through a ubiquitin-mediated pathway led by Ndfip1, an adaptor for Nedd4 family of E3 ligases. Here we show that loss of Ndfip1 from mouse dopaminergic neurons resulted in misregulation of DMT1 levels and increased susceptibility to iron induced death. We report that in human Parkinson's brains increased iron concentrations in the substantia nigra are associated with upregulated levels of Ndfip1 in dopaminergic neurons containing α-synuclein deposits. Additionally, Ndfip1 was also found to be misexpressed in astrocytes, a cell type normally devoid of this protein. We suggest that in Parkinson's disease, increased iron levels are associated with increased Ndfip1 expression for the regulation of DMT1, including abnormal Ndfip1 activation in non-neuronal cell types such as astrocytes.


Asunto(s)
Astrocitos/metabolismo , Proteínas Portadoras/metabolismo , Neuronas Dopaminérgicas/metabolismo , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Enfermedad de Parkinson/genética , Sustancia Negra/metabolismo , Factores de Transcripción/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Proteínas Portadoras/genética , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Embrión de Mamíferos , Femenino , Regulación de la Expresión Génica , Humanos , Transporte Iónico , Hierro/farmacología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Cultivo Primario de Células , Transducción de Señal , Sustancia Negra/patología , Factores de Transcripción/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
Acta Neuropathol Commun ; 1: 11, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24252509

RESUMEN

BACKGROUND: ATP13A2 (PARK9) loss of function mutations are a genetic cause of an early-onset form of Parkinson's disease (PD), with in vitro studies showing that ATP13A2 deficits lead to lysosomal and mitochondrial dysfunction and α-synuclein accumulation, while elevated ATP13A2 expression reduces α-synuclein toxicity. The three human brain tissue studies assessing changes in ATP13A2 expression in PD produced divergent results; mRNA is increased while protein levels were observed to be either increased or decreased. This apparent conflict in protein levels might have arisen from examining Lewy body disease cases with coexisting Alzheimer-type pathologies.To assess whether ATP13A2 levels in Lewy body disease are modified by Alzheimer-type ß-amyloid deposition, we evaluated cases of pure PD and pure dementia with Lewy bodies (DLB) for changes in ATP13A2, α-synuclein and ß-amyloid protein levels in cortical regions with and without Lewy bodies. RESULTS: In all Lewy body disease cases, we identified decreased ATP13A2 protein levels that correlated with increases in both α-synuclein and ß-amyloid. Partial colocalization was observed between ATP13A2 and α-synuclein in Lewy bodies, whereas ATP13A2 did not colocalize with pathological ß-amyloid deposition. CONCLUSIONS: Our data show that patients with Lewy body diseases have an overall deficit in ATP13A2 protein levels, with the remaining protein being more insoluble and partially redistributing towards Lewy bodies. This supports the concept that increasing ATP13A2 levels may offer potential therapeutic benefits to patients with Lewy body diseases.


Asunto(s)
Corteza Cerebral/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/metabolismo , ATPasas de Translocación de Protón/metabolismo , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Western Blotting , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/metabolismo , alfa-Sinucleína/metabolismo
9.
J Mol Med (Berl) ; 91(4): 513-22, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23183827

RESUMEN

Mutations in the genes encoding leucine-rich repeat kinase 2 (LRRK2) and α-synuclein are associated with both autosomal dominant and idiopathic forms of Parkinson's disease (PD). α-Synuclein is the main protein in Lewy bodies, hallmark inclusions present in both sporadic and familial PD. We show that in PD brain tissue, the levels of LRRK2 are positively related to the increase in α-synuclein phosphorylation and aggregation in affected brain regions (amygdala and anterior cingulate cortex), but not in the unaffected visual cortex. In disease-affected regions, we show co-localization of these two proteins in neurons and Lewy body inclusions. Further, in vitro experiments show a molecular interaction between α-synuclein and LRRK2 under endogenous and over-expression conditions. In a cell culture model of α-synuclein inclusion formation, LRRK2 co-localizes with the α-synuclein inclusions, and knocking down LRRK2 increases the number of smaller inclusions. In addition to providing strong evidence for an interaction between LRRK2 and α-synuclein, our results shed light on the complex relationship between these two proteins in the brains of patients with PD and the underlying molecular mechanisms of the disease.


Asunto(s)
Encéfalo/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Ratones , Ratones Noqueados , Enfermedad de Parkinson/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética
10.
PLoS One ; 8(1): e55243, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23372841

RESUMEN

Multiple system atrophy is a parkinsonian neurodegenerative disorder. It is cytopathologically characterized by accumulation of the protein p25α in cell bodies of oligodendrocytes followed by accumulation of aggregated α-synuclein in so-called glial cytoplasmic inclusions. p25α is a stimulator of α-synuclein aggregation, and coexpression of α-synuclein and p25α in the oligodendroglial OLN-t40-AS cell line causes α-synuclein aggregate-dependent toxicity. In this study, we investigated whether the FAS system is involved in α-synuclein aggregate dependent degeneration in oligodendrocytes and may play a role in multiple system atrophy. Using rat oligodendroglial OLN-t40-AS cells we demonstrate that the cytotoxicity caused by coexpressing α-synuclein and p25α relies on stimulation of the death domain receptor FAS and caspase-8 activation. Using primary oligodendrocytes derived from PLP-α-synuclein transgenic mice we demonstrate that they exist in a sensitized state expressing pro-apoptotic FAS receptor, which makes them sensitive to FAS ligand-mediated apoptosis. Immunoblot analysis shows an increase in FAS in brain extracts from multiple system atrophy cases. Immunohistochemical analysis demonstrated enhanced FAS expression in multiple system atrophy brains notably in oligodendrocytes harboring the earliest stages of glial cytoplasmic inclusion formation. Oligodendroglial FAS expression is an early hallmark of oligodendroglial pathology in multiple system atrophy that mechanistically may be coupled to α-synuclein dependent degeneration and thus represent a potential target for protective intervention.


Asunto(s)
Atrofia de Múltiples Sistemas/genética , Atrofia de Múltiples Sistemas/metabolismo , Oligodendroglía/metabolismo , alfa-Sinucleína/genética , Receptor fas/metabolismo , Anciano , Animales , Encéfalo/metabolismo , Encéfalo/patología , Muerte Celular/efectos de los fármacos , Proteína Ligando Fas/metabolismo , Proteína Ligando Fas/toxicidad , Expresión Génica , Humanos , Ratones , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/efectos de los fármacos , Unión Proteica , Transporte de Proteínas , Ratas , Transducción de Señal , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA