Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 18(1): e1010227, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041705

RESUMEN

The blood-clotting protein fibrin(ogen) plays a critical role in host defense against invading pathogens, particularly against peritoneal infection by the Gram-positive microbe Staphylococcus aureus. Here, we tested the hypothesis that direct binding between fibrin(ogen) and S. aureus is a component of the primary host antimicrobial response mechanism and prevention of secondary microbe dissemination from the peritoneal cavity. To establish a model system, we showed that fibrinogen isolated from FibγΔ5 mice, which express a mutant form lacking the final 5 amino acids of the fibrinogen γ chain (termed fibrinogenγΔ5), did not support S. aureus adherence when immobilized and clumping when in suspension. In contrast, purified wildtype fibrinogen supported robust adhesion and clumping that was largely dependent on S. aureus expression of the receptor clumping factor A (ClfA). Following peritoneal infection with S. aureus USA300, FibγΔ5 mice displayed worse survival compared to WT mice coupled to reduced bacterial killing within the peritoneal cavity and increased dissemination of the microbes into circulation and distant organs. The failure of acute bacterial killing, but not enhanced dissemination, was partially recapitulated by mice infected with S. aureus USA300 lacking ClfA. Fibrin polymer formation and coagulation transglutaminase Factor XIII each contributed to killing of the microbes within the peritoneal cavity, but only elimination of polymer formation enhanced systemic dissemination. Host macrophage depletion or selective elimination of the fibrin(ogen) ß2-integrin binding motif both compromised local bacterial killing and enhanced S. aureus systemic dissemination, suggesting fibrin polymer formation in and of itself was not sufficient to retain S. aureus within the peritoneal cavity. Collectively, these findings suggest that following peritoneal infection, the binding of S. aureus to stabilized fibrin matrices promotes a local, macrophage-mediated antimicrobial response essential for prevention of microbe dissemination and downstream host mortality.


Asunto(s)
Fibrinógeno/inmunología , Peritonitis/inmunología , Infecciones Estafilocócicas/inmunología , Animales , Coagulasa/inmunología , Coagulasa/metabolismo , Fibrina/metabolismo , Ratones , Peritonitis/metabolismo , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/inmunología , Staphylococcus aureus/metabolismo
2.
Sci Rep ; 9(1): 11619, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406152

RESUMEN

Fibronectin-binding protein A (FnBPA), a protein displayed on the outer surface of Staphylococcus aureus, has a structured A-domain that binds fibrinogen (Fg) and a disordered repeat-region that binds fibronectin (Fn). Amino acid substitutions in Fn-binding repeats (FnBRs) have previously been linked to cardiovascular infection in humans. Here we used microtiter and atomic force microscopy (AFM) to investigate adhesion by variants of full-length FnBPA covalently anchored in the outer cell wall of Lactococcus lactis, a Gram-positive surrogate that otherwise lacks adhesins to mammalian ligands. Fn adhesion increased in five of seven FnBPA variants under static conditions. The bond targeting Fn increased its strength with load under mechanical dissociation. Substitutions extended bond lifetime (1/koff) up to 2.1 times for FnBPA-Fn. Weaker adhesion was observed for Fg in all FnBPA variants tested with microtiter. However, mechanical dissociation with AFM showed significantly increased tensile strength for Fg interacting with the E652D/H782Q variant. This is consistent with a force-induced mechanism and suggests that the dock, lock, and latch (DLL) mechanism is favored for Fg-binding under mechanical stress. Collectively, these experiments reveal that FnBPA exhibits bimodal, ligand-dependent adhesive behavior. Amino acid substitutions in the repeat-region of FnBPA impact binding to both ligands. This was unexpected for Fg since all variants have the same A-domain sequence, and the Fg-binding site is distant from the repeat region. This indicates that FnBRs may fold back on the A-domain in a way that impacts the DLL binding mechanism for Fg.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Sustitución de Aminoácidos , Fibrinógeno/metabolismo , Staphylococcus aureus/metabolismo , Secuencias Repetidas Terminales , Adhesinas Bacterianas/química , Lactococcus lactis/metabolismo , Unión Proteica
3.
J Mater Chem B ; 3(40): 7912-7919, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-28989705

RESUMEN

This work evaluates the response of human aortic endothelial cells (HAECs) to thromboresistant collagen-mimetic hydrogel coatings toward improving the biocompatibility of existing "off-the-shelf" small-caliber vascular grafts. Specifically, bioactive hydrogels - previously shown to support α1/α2 integrin-mediated cell adhesion but to resist platelet activation - were fabricated by combining poly(ethylene glycol) (PEG) with a 120 kDa, triple-helical collagen-mimetic protein(Scl2-2) containing the GFPGER adhesion sequence. Analysis of HAECs seeded onto the resulting PEG-Scl2-2 hydrogels demonstrated that HAEC adhesion increased with increasing Scl2-2 concentration, while HAEC migration rate decreased over this same concentration range. In addition, evaluation of HAEC phenotype at confluence indicated significant differences in the gene expression of NOS3, thrombomodulin, and E-selectin on the PEG-Scl2-2 hydrogels relative to PEG-collagen controls. At the protein level, however, only NOS3 was significantly different between the PEG-Scl2-2 and PEG-collagen surfaces. Furthermore, PECAM-1 and VE-cadherin expression on PEG-Scl2-2 hydrogels versus PEG-collagen controls could not be distinguished at either the gene or protein level. Cumulatively, these data indicate the PEG-Scl2-2 hydrogels warrant further investigation as "off-the-shelf" graft coatings. In future studies, the Scl2-2 protein can potentially be modified to include additional extracellular matrix or cytokine binding sites to further improve endothelial cell responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA