RESUMEN
Understanding the mechanisms underlying diversity-productivity relationships (DPRs) is crucial to mitigating the effects of forest biodiversity loss. Tree-tree interactions in diverse communities are fundamental in driving growth rates, potentially shaping the emergent DPRs, yet remain poorly explored. Here, using data from a large-scale forest biodiversity experiment in subtropical China, we demonstrated that changes in individual tree productivity were driven by species-specific pairwise interactions, with higher positive net pairwise interaction effects on trees in more diverse neighbourhoods. By perturbing the interactions strength from empirical data in simulations, we revealed that the positive differences between inter- and intra-specific interactions were the critical determinant for the emergence of positive DPRs. Surprisingly, the condition for positive DPRs corresponded to the condition for coexistence. Our results thus provide a novel insight into how pairwise tree interactions regulate DPRs, with implications for identifying the tree mixtures with maximized productivity to guide forest restoration and reforestation efforts.
Asunto(s)
Bosques , Árboles , Árboles/fisiología , Biodiversidad , China , EcosistemaRESUMEN
Plant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global-change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.
Asunto(s)
Ecosistema , Bosques , Árboles , Plantas , NitrógenoRESUMEN
Biodiversity is considered to mitigate the adverse effects of changing precipitation patterns. However, our understanding of how tree diversity at the local neighbourhood scale modulates the water use and leaf physiology of individual trees remains unclear. We made use of a large-scale tree diversity experiment in subtropical China to study eight tree species along an experimentally manipulated gradient of local neighbourhood tree species richness. Twig wood carbon isotope composition (δ13Cwood) was used as an indicator for immediate leaf-level responses to water availability in relation to local neighbourhood conditions and a target tree's functional traits. Across species, a target tree's δ13Cwood signatures decreased progressively with increasing neighbourhood species richness, with effects being strongest at high neighbourhood shading intensity. Moreover, the δ13Cwood-shading relationship shifted from positive (thin-leaved species) or neutral (thick-leaved species) in conspecific to negative in heterospecific neighbourhoods, most likely owing to a lower interspecific competition for water and microclimate amelioration. This suggests that promoting tree species richness at the local neighbourhood scale may improve a tree's local water supply with potential effects for an optimized water-use efficiency of tree communities during drought. This assumption, however, requires validation by further studies that focus on mechanisms that regulate the water availability in mixtures.
Asunto(s)
Árboles , Madera , Biodiversidad , China , Ecosistema , Bosques , Abastecimiento de AguaRESUMEN
Variations in crown forms promote canopy space-use and productivity in mixed-species forests. However, we have a limited understanding on how this response is mediated by changes in within-tree biomass allocation. Here, we explored the role of changes in tree allometry, biomass allocation and architecture in shaping diversity-productivity relationships (DPRs) in the oldest tropical tree diversity experiment. We conducted whole-tree destructive biomass measurements and terrestrial laser scanning. Spatially explicit models were built at the tree level to investigate the effects of tree size and local neighbourhood conditions. Results were then upscaled to the stand level, and mixture effects were explored using a bootstrapping procedure. Biomass allocation and architecture substantially changed in mixtures, which resulted from both tree-size effects and neighbourhood-mediated plasticity. Shifts in biomass allocation among branch orders explained substantial shares of the observed overyielding. By contrast, root-to-shoot ratios, as well as the allometric relationships between tree basal area and aboveground biomass, were little affected by the local neighbourhood. Our results suggest that generic allometric equations can be used to estimate forest aboveground biomass overyielding from diameter inventory data. Overall, we demonstrate that shifts in tree biomass allocation are mediated by the local neighbourhood and promote DPRs in tropical forests.
Asunto(s)
Biodiversidad , Árboles , Biomasa , Bosques , Clima TropicalRESUMEN
Diversity of producers (e.g. plants) usually increases the diversity of associated organisms, but the scale (i.e. the spatial area of plant diversity considered) at which plant diversity acts on other taxa has rarely been studied. Most evidence for cross-taxon diversity relations come from above-ground consumers that directly interact with plants. Experimental tests of plant diversity effects on elusive organisms inhabiting the leaf litter layer, which are important for nutrient cycling and decomposition, are rare. Using a large tree diversity experiment, we tested whether tree diversity at the larger plot (i.e. community) or the smaller neighbourhood scale relates to the abundance, species richness, functional and phylogenetic diversity of leaf litter ants, which are dominant organisms in brown food webs. Contrary to our expectations of scale-independent positive tree diversity effects, ant diversity increased only with plot but not neighbourhood tree diversity. While the exact causal mechanisms are unclear, nest relocation or small-scale competition among ants may explain the stronger tree diversity effects at the plot scale. Our results indicate that even for small and less mobile organisms in the leaf litter, effects of tree diversity are stronger at relatively larger scales. The finding emphasizes the importance of diverse forest stands, in which mixing of tree species is not restricted to small patches, for supporting arthropod diversity in the leaf litter.
Asunto(s)
Hormigas/genética , Animales , Biodiversidad , Ecosistema , Bosques , FilogeniaRESUMEN
Local neighbourhood interactions are considered a main driver for biodiversity-productivity relationships in forests. Yet, the structural responses of individual trees in species mixtures and their relation to crown complementarity remain poorly understood. Using a large-scale forest experiment, we studied the impact of local tree species richness and structural variability on above-ground wood volume allocation patterns and crown morphology. We applied terrestrial laser scanning to capture the three-dimensional structure of trees and their temporal dynamics. We found that crown complementarity and crown plasticity increased with species richness. Trees growing in species-rich neighbourhoods showed enhanced aboveground wood volume both in trunks and branches. Over time, neighbourhood diversity induced shifts in wood volume allocation in favour of branches, in particular for morphologically flexible species. Our results demonstrate that diversity-mediated shifts in allocation pattern and crown morphology are a fundamental mechanism for crown complementarity and may be an important driver of overyielding.
Asunto(s)
Bosques , Árboles , Biodiversidad , BiomasaRESUMEN
Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global-change drivers such as climate change or atmospheric deposition, as well as to local land-use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global-change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global-change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global-change drivers, with species-specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus' growth, highlighting species-specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus' growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global-change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.
Asunto(s)
Cambio Climático , Fagus/crecimiento & desarrollo , Fraxinus/crecimiento & desarrollo , Quercus/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Sequías , Europa (Continente) , Bosques , Ciclo del Nitrógeno , TemperaturaRESUMEN
Light-related interactions can increase productivity in tree-species mixtures compared with monocultures due to higher stand-level absorption of photosynthetically active radiation (APAR) or light-use efficiency (LUE). However, the effects of different light-related interactions, and their relative importance, have rarely been quantified. Here, measurements of vertical leaf-area distributions, tree sizes, and stand density were combined with a tree-level light model (Maestra) to examine how crown architecture and vertical or horizontal canopy structure influence the APAR of 16 monocultures and eight different two-species mixtures with 16 different species in a Chinese subtropical tree diversity experiment. A higher proportion of crown leaf area occurred in the upper crowns of species with higher specific leaf areas. Tree-level APAR depended largely on tree leaf area and also, but to a lesser extent, on relative height (i.e., tree dominance) and leaf-area index (LAI). Stand-level APAR depended on LAI and canopy volume, but not on the vertical stratification or canopy leaf-area density. The mixing effects, in terms of relative differences between mixtures and monocultures, on stand-level APAR were correlated with the mixing effects on basal area growth, indicating that light-related interactions may have been responsible for part of the mixing effects on basal area growth. While species identity influences the vertical distributions of leaf area within tree crowns, this can have a relatively small effect on tree and stand APAR compared with the size and vertical positioning of the crowns, or the LAI and canopy volume.
Asunto(s)
Hojas de la Planta , ÁrbolesRESUMEN
Climate change can impact forest ecosystem processes via individual tree and community responses. While the importance of land-use legacies in modulating these processes have been increasingly recognised, evidence of former land-use mediated climate-growth relationships remain rare. We analysed how differences in former land-use (i.e. forest continuity) affect the growth response of European beech to climate extremes. Here, using dendrochronological and fine root data, we show that ancient forests (forests with a long forest continuity) and recent forests (forests afforested on former farmland) clearly differ with regard to climate-growth relationships. We found that sensitivity to climatic extremes was lower for trees growing in ancient forests, as reflected by significantly lower growth reductions during adverse climatic conditions. Fine root morphology also differed significantly between the former land-use types: on average, trees with high specific root length (SRL) and specific root area (SRA) and low root tissue density (RTD) were associated with recent forests, whereas the opposite traits were characteristic of ancient forests. Moreover, we found that trees of ancient forests hold a larger fine root system than trees of recent forests. Our results demonstrate that land-use legacy-mediated modifications in the size and morphology of the fine root system act as a mechanism in regulating drought resistance of beech, emphasising the need to consider the 'ecological memory' of forests when assessing or predicting the sensitivity of forest ecosystems to global environmental change.
Asunto(s)
Fagus , Árboles , Cambio Climático , Ecosistema , BosquesRESUMEN
Studies on tree communities have demonstrated that species diversity can enhance forest productivity, but the driving mechanisms at the local neighbourhood level remain poorly understood. Here, we use data from a large-scale biodiversity experiment with 24 subtropical tree species to show that neighbourhood tree species richness generally promotes individual tree productivity. We found that the underlying mechanisms depend on a focal tree's functional traits: For species with a conservative resource-use strategy diversity effects were brought about by facilitation, and for species with acquisitive traits by competitive reduction. Moreover, positive diversity effects were strongest under low competition intensity (quantified as the total basal area of neighbours) for acquisitive species, and under high competition intensity for conservative species. Our findings demonstrate that net biodiversity effects in tree communities can vary over small spatial scales, emphasising the need to consider variation in local neighbourhood interactions to better understand effects at the community level.
Asunto(s)
Biodiversidad , Bosques , ÁrbolesRESUMEN
Biodiversity loss may alter ecosystem processes, such as herbivory, a key driver of ecological functions in species-rich (sub)tropical forests. However, the mechanisms underlying such biodiversity effects remain poorly explored, as mostly effects of species richness - a very basic biodiversity measure - have been studied. Here, we analyze to what extent the functional and phylogenetic diversity of woody plant communities affect herbivory along a diversity gradient in a subtropical forest. We assessed the relative effects of morphological and chemical leaf traits and of plant phylogenetic diversity on individual-level variation in herbivory of dominant woody plant species across 27 forest stands in south-east China. Individual-level variation in herbivory was best explained by multivariate, community-level diversity of leaf chemical traits, in combination with community-weighted means of single traits and species-specific phylodiversity measures. These findings deviate from those based solely on trait variation within individual species. Our results indicate a strong impact of generalist herbivores and highlight the need to assess food-web specialization to determine the direction of biodiversity effects. With increasing plant species loss, but particularly with the concomitant loss of functional and phylogenetic diversity in these forests, the impact of herbivores will probably decrease - with consequences for the herbivore-mediated regulation of ecosystem functions.
Asunto(s)
Biodiversidad , Bosques , Herbivoria/fisiología , Filogenia , Madera , China , Hojas de la Planta/fisiología , Carácter Cuantitativo HeredableRESUMEN
Differences in herbivory among woody species can greatly affect the functioning of forest ecosystems, particularly in species-rich (sub)tropical regions. However, the relative importance of the different plant traits which determine herbivore damage remains unclear. Defence traits can have strong effects on herbivory, but rarely studied geographical range characteristics could complement these effects through evolutionary associations with herbivores. Herein, we use a large number of morphological, chemical, phylogenetic and biogeographical characteristics to analyse interspecific differences in herbivory on tree saplings in subtropical China. Unexpectedly, we found no significant effects of chemical defence traits. Rather, herbivory was related to the plants' leaf morphology, local abundance and climatic niche characteristics, which together explained 70% of the interspecific variation in herbivory in phylogenetic regression. Our study indicates that besides defence traits and apparency to herbivores, previously neglected measures of large-scale geographical host distribution are important factors influencing local herbivory patterns among plant species.
Asunto(s)
Herbivoria , Árboles , Animales , Biodiversidad , China , Clima , Insectos , Hojas de la Planta/química , Densidad de PoblaciónRESUMEN
Vegetation-plot resurvey data are a main source of information on terrestrial biodiversity change, with records reaching back more than one century. Although more and more data from re-sampled plots have been published, there is not yet a comprehensive open-access dataset available for analysis. Here, we compiled and harmonised vegetation-plot resurvey data from Germany covering almost 100 years. We show the distribution of the plot data in space, time and across habitat types of the European Nature Information System (EUNIS). In addition, we include metadata on geographic location, plot size and vegetation structure. The data allow temporal biodiversity change to be assessed at the community scale, reaching back further into the past than most comparable data yet available. They also enable tracking changes in the incidence and distribution of individual species across Germany. In summary, the data come at a level of detail that holds promise for broadening our understanding of the mechanisms and drivers behind plant diversity change over the last century.
Asunto(s)
Biodiversidad , Ecosistema , Alemania , PlantasRESUMEN
Aims: Although different plant foraging responses to the two macronutrients nitrogen (N) and phosphorus (P) are well researched, the effect of timing of fertilizer application on root system architecture (RSA) remains largely unknown. We, therefore, aimed to understand how RSA of Hordeum vulgare L. responds to timing of N and P application. Methods: Plants were grown in rhizoboxes for 38 days in nutrient-poor soil and watered with nutrient solution, lacking either N or P, with the absent nutrient applied once either 2/3/4 weeks after sowing. Positive controls were continuously receiving N and P and a negative control receiving both N and P only after 3 weeks. We tracked root growth over time, measured plant biomass and nutrient uptake. Results: Late N application strongly reduced total root biomass and visible root length compared with continuous NP and late P application. Root mass fractions (total root biomass/total plant biomass) remained similar over all treatments, but relative allocation (% of total root biomass) was higher in lower depth with late N application. Shoot P concentrations remained relatively stable, but the plants receiving P later had higher N concentrations. Conclusions: Late N application had overall more negative effects on early plant growth compared with late P. We propose that future studies under field conditions should try to disentangle the effect of timing from the nutrient availability on RSA responses and hence ultimately plant performance.
RESUMEN
As woody plants provide much of the trophic basis for food webs in forests their species richness, but also stand age and numerous further variables such as vegetation structure, soil properties and elevation can shape assemblages of ground beetles (Coleoptera: Carabidae). However, the combined impact of these numerous variables on ground beetle diversity and community structure has rarely been studied simultaneously. Therefore, ground beetles were studied in 27 plots in a highly diverse and structurally heterogeneous subtropical forest ecosystem, the Gutianshan National Park (southeast China) using pitfall traps and flight interception traps. Both trapping methods collected partly overlapping species spectra. The arboreal fauna was dominated by lebiines and to a smaller extent by tiger beetles and platynines; the epigeic fauna comprised mostly representatives of the genus Carabus and numerous tribes, especially anisodactylines, pterostichines, and sphodrines. Ground beetle species richness, abundance, and biomass of the pitfall trap catches were analyzed with generalized linear mixed models (GLMMs), fitted with seven environmental variables. Four of these variables influenced the ground beetle assemblages: Canopy cover, herb cover, pH-value of the topsoil and elevation. Contrary to our expectations, woody plant species richness and stand age did not significantly affect ground beetle assemblages. Thus, ground beetles seem to respond differently to environmental variables than ants and spiders, two other predominantly predatory arthropod groups that were studied on the same plots in our study area and which showed distinct relationships with woody plant richness. Our results highlight the need to study a wider range of taxa to achieve a better understanding of how environmental changes affect species assemblages and their functioning in forest ecosystems.
RESUMEN
Extreme climatic events threaten forests and their climate mitigation potential globally. Understanding the drivers promoting ecosystem stability is therefore considered crucial for mitigating adverse climate change effects on forests. Here, we use structural equation models to explain how tree species richness, asynchronous species dynamics, species-level population stability, and drought-tolerance traits relate to the stability of forest productivity along an experimentally manipulated species richness gradient ranging from 1 to 24 tree species. Tree species richness improved community stability by increasing asynchrony. That is, at higher species richness, interannual variation in productivity among tree species buffered the community against stress-related productivity declines. This effect was positively related to variation in stomatal control and resistance-acquisition strategies among species, but not to the community-weighted means of these trait syndromes. The identified mechanisms by which tree species richness stabilizes forest productivity emphasize the importance of diverse, mixed-species forests to adapt to climate change.
RESUMEN
To counteract habitat fragmentation, the connectivity of a landscape should be enhanced. Corridors are thought to facilitate movement between disconnected patches of habitat, and linear strips of habitat connecting isolated patches are a popular type of corridor. On the other hand, the creation of new corridors can lead to fragmentation of the surrounding habitat. For example, heathland corridors connect patches of heathland and alternatively hedgerows connect patches of woodland. Nevertheless, these corridors themselves also break up previously connected patches of their surrounding habitat and in so doing fragment another type of habitat (heathland corridors fragment woodlands and woodland strips or hedgerows fragment heathlands). To overcome this challenge we propose the use of semi-open habitats (a mixture of heathland and woodland vegetation) as conservation corridors to enable dispersal of both stenotopic heathland and woodland species. We used two semi-open corridors with a mosaic of heathland and woody vegetation to investigate the efficiency of semi-open corridors for species dispersal and to assess whether these corridors might be a suitable approach for nature conservation. We conducted a mark-recapture study on three stenotopic flightless carabid beetles of heathlands and woodlands and took an inventory of all the carabid species in two semi-open corridors. Both methodological approaches showed simultaneous immigration of woodland and heathland species in the semi-open corridor. Detrended correspondence analysis showed a clear separation of the given habitats and affirmed that semi-open corridors are a good strategy for connecting woodlands and heathlands. The best means of creating and preserving semi-open corridors is probably through extensive grazing.
Asunto(s)
Escarabajos/fisiología , Ecosistema , AnimalesRESUMEN
Humans modify ecosystems and biodiversity worldwide, with negative consequences for ecosystem functioning. Promoting plant diversity is increasingly suggested as a mitigation strategy. However, our mechanistic understanding of how plant diversity affects the diversity of heterotrophic consumer communities remains limited. Here, we disentangle the relative importance of key components of plant diversity as drivers of herbivore, predator, and parasitoid species richness in experimental forests and grasslands. We find that plant species richness effects on consumer species richness are consistently positive and mediated by elevated structural and functional diversity of the plant communities. The importance of these diversity components differs across trophic levels and ecosystems, cautioning against ignoring the fundamental ecological complexity of biodiversity effects. Importantly, plant diversity effects on higher trophic-level species richness are in many cases mediated by modifications of consumer abundances. In light of recently reported drastic declines in insect abundances, our study identifies important pathways connecting plant diversity and consumer diversity across ecosystems.
Asunto(s)
Biodiversidad , Plantas , Animales , Artrópodos/fisiología , Especificidad de la EspecieRESUMEN
Theory suggests that plant interactions at the neighbourhood scale play a fundamental role in regulating biodiversity-productivity relationships (BPRs) in tree communities. However, empirical evidence of this prediction is rare, as little is known about how neighbourhood interactions scale up to influence community BPRs. Here, using a biodiversity-ecosystem functioning experiment, we provide insights into processes underlying BPRs by demonstrating that diversity-mediated interactions among local neighbours are a strong regulator of productivity in species mixtures. Our results show that local neighbourhood interactions explain over half of the variation in observed community productivity along a diversity gradient. Overall, individual tree growth increased with neighbourhood species richness, leading to a positive BPR at the community scale. The importance of local-scale neighbourhood effects for regulating community productivity, however, distinctly increased with increasing community species richness. Preserving tree species diversity at the local neighbourhood scale, thus seems to be a promising way for promoting forest productivity.
Asunto(s)
Ecosistema , Árboles/crecimiento & desarrollo , Biodiversidad , Biomasa , Bosques , Árboles/clasificaciónRESUMEN
Ecosystems adapted to low nitrogen (N) conditions such as Calluna-heathlands are especially sensitive to enhanced atmospheric N deposition that affects many aspects of ecosystem functioning like nutrient cycling, soil properties and plant-microbial-enzyme relationships. We investigated the effects of five levels of experimentally-simulated N deposition rates (i.e., N fertilization treatments: 0, 10, 20 and 50kgNha-1yr-1 for 3years, and 56kgNha-1yr-1 for 10years) on: plant, litter, microbial biomass and soil nutrient contents, soil extracellular enzymatic activities, and plant root ericoid mycorrhizal colonization. The study was conducted in marginal montane Calluna-heathlands at different developmental stages resulting from management (young/building-phase and mature-phase). Our findings revealed that many soil properties did not show a statistically significant response to the experimental addition of N, including: total N, organic carbon (C), C:N ratio, extractable N-NO3-, available phosphorus (P), urease and ß-glucosidase enzyme activities, and microbial biomass C and N. Our results also evidenced a considerable positive impact of chronic (10-year) high-N loading on soil extractable N-NH4+, acid phosphatase enzyme activity, Calluna root mycorrhizal colonization by ericoid fungi, Calluna shoot N and P contents, and litter N content and N:P ratio. The age of heathland vegetation influenced the effects of N addition on ericoid mycorrhizal colonization, resulting in higher colonized roots in young heathlands at the control, low and medium N-input rates; and in mature ones at the high and chronically high N rates. Also, young heathlands exhibited greater soil extractable N-NO3-, available P, microbial biomass N, Calluna shoot N and P contents, and litter N content, compared to mature ones. Our results highlighted that accounting for the N-input load and duration, as well as the developmental stage of the vegetation, is important for assessing the effects of added N, particularly at the heathlands' southern distribution limit.