Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 26(9): 11366-11392, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29716058

RESUMEN

We present numerical studies of two photonic crystal membrane microcavities, a short line-defect cavity with a relatively low quality (Q) factor and a longer cavity with a high Q. We use five state-of-the-art numerical simulation techniques to compute the cavity Q factor and the resonance wavelength λ for the fundamental cavity mode in both structures. For each method, the relevant computational parameters are systematically varied to estimate the computational uncertainty. We show that some methods are more suitable than others for treating these challenging geometries.

2.
J Opt Soc Am A Opt Image Sci Vis ; 34(9): 1632-1641, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036165

RESUMEN

Recently, an open geometry Fourier modal method based on a new combination of an open boundary condition and a non-uniform k-space discretization was introduced for rotationally symmetric structures, providing a more efficient approach for modeling nanowires and micropillar cavities [J. Opt. Soc. Am. A33, 1298 (2016)JOAOD61084-752910.1364/JOSAA.33.001298]. Here, we generalize the approach to three-dimensional (3D) Cartesian coordinates, allowing for the modeling of rectangular geometries in open space. The open boundary condition is a consequence of having an infinite computational domain described using basis functions that expand the whole space. The strength of the method lies in discretizing the Fourier integrals using a non-uniform circular "dartboard" sampling of the Fourier k space. We show that our sampling technique leads to a more accurate description of the continuum of the radiation modes that leak out from the structure. We also compare our approach to conventional discretization with direct and inverse factorization rules commonly used in established Fourier modal methods. We apply our method to a variety of optical waveguide structures and demonstrate that the method leads to a significantly improved convergence, enabling more accurate and efficient modeling of open 3D nanophotonic structures.

3.
J Opt Soc Am A Opt Image Sci Vis ; 33(7): 1298-306, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27409686

RESUMEN

We present an open-geometry Fourier modal method based on a new combination of open boundary conditions and an efficient k-space discretization. The open boundary of the computational domain is obtained using basis functions that expand the whole space, and the integrals subsequently appearing due to the continuous nature of the radiation modes are handled using a discretization based on nonuniform sampling of the k space. We apply the method to a variety of photonic structures and demonstrate that our method leads to significantly improved convergence with respect to the number of degrees of freedom, which may pave the way for more accurate and efficient modeling of open nanophotonic structures.

4.
Sci Rep ; 7(1): 11534, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28912579

RESUMEN

The Purcell effect, i.e., the modification of the spontaneous emission rate by optical interference, profoundly affects the light-matter coupling in optical resonators. Fully describing the optical absorption, emission, and interference of light hence conventionally requires combining the full Maxwell's equations with stochastic or quantum optical source terms accounting for the quantum nature of light. We show that both the nonlocal wave and local particle features associated with interference and emission of propagating fields in stratified geometries can be fully captured by local damping and scattering coefficients derived from the recently introduced quantized fluctuational electrodynamics (QFED) framework. In addition to describing the nonlocal optical interference processes as local directionally resolved effects, this allows reformulating the well known and widely used radiative transfer equation (RTE) as a physically transparent interference-exact model that extends the useful range of computationally efficient and quantum optically accurate interference-aware optical models from simple structures to full optical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA