Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
FASEB J ; 27(10): 4169-83, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23804239

RESUMEN

The heat-shock protein 27 (HSP27) is up-regulated in tumor cells and released in their microenvironment. Here, we show that extracellular HSP27 has a proangiogenic effect evidenced on chick chorioallantoic membrane. To explore this effect, we test the recombinant human protein (rhHSP27) at physiopathological doses (0.1-10 µg/ml) onto human microvascular endothelial cells (HMECs) grown as monolayers or spheroids. When added onto HMECs, rhHSP27 dose-dependently accelerates cell migration (with a peak at 5 µg/ml) and favors spheroid sprouting within 12-24 h. rhHSP27 increases VEGF gene transcription and promotes secretion of VEGF-activating VEGF receptor type 2. Increased VEGF transcription is related to NF-κB activation in 30 min. All of these effects are initiated by rhHSP27 interaction with Toll-like receptor 3 (TLR3). Such an interaction can be detected by immunoprecipitation but does not seem to be direct, as we failed to detect an interaction between rhHSP27 and monomeric TLR3 by SPR analysis. rhHSP27 is rapidly internalized with a pool of TLR3 to the endosomal compartment (within 15-30 min), which is required for NF-κB activation in a cytosolic Ca(2+)-dependent manner. The HSP27/TLR3 interaction induces NF-κB activation, leading to VEGF-mediated cell migration and angiogenesis. Such a pathway provides alternative targets for antiangiogenic cancer therapy.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Neovascularización Fisiológica/fisiología , Receptor Toll-Like 3/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Proteínas de Choque Térmico HSP27/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Receptor Toll-Like 3/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Biochim Biophys Acta ; 1812(4): 423-30, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21172433

RESUMEN

Insulin resistance in type 2 diabetes (T2D) is associated with intramuscular lipid (IMCL) accumulation. To determine whether impaired lipid oxidation is involved in IMCL accumulation, we measured expression of genes involved in mitochondrial oxidative metabolism or biogenesis, mitochondrial content and palmitate beta-oxidation before and after palmitate overload (600µM for 16h), in myotubes derived from healthy subjects and obese T2D patients. Mitochondrial gene expression, content and network were not different between groups. Basal palmitate beta-oxidation was not affected in T2D myotubes, whereas after 16h of palmitate pre-treatment, T2D myotubes in contrast to control myotubes, showed an inability to increase palmitate beta-oxidation (p<0.05). Interestingly, acetyl-CoA carboxylase (ACC) phosphorylation was increased with a tendency for statistical significance after palmitate pre-treatment in control myotubes (p=0.06) but not in T2D myotubes which can explain their inability to increase palmitate beta-oxidation after palmitate overload. To determine whether the activation of the AMP activated protein kinase (AMPK)-ACC pathway was able to decrease lipid content in T2D myotubes, cells were treated with AICAR and metformin. These AMPK activators had no effect on ACC and AMPK phosphorylation in T2D myotubes as well as on lipid content, whereas AICAR, but not metformin, increased AMPK phosphorylation in control myotubes. Interestingly, metformin treatment and mitochondrial inhibition by antimycin induced increased lipid content in control myotubes. We conclude that T2D myotubes display an impaired capacity to respond to metabolic stimuli.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Obesidad/metabolismo , Palmitatos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Células Cultivadas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Humanos , Hipoglucemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Metformina/farmacología , Persona de Mediana Edad , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Oxidación-Reducción , Fosforilación , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/patología , Ribonucleótidos/farmacología
3.
FASEB J ; 25(1): 337-47, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20881209

RESUMEN

AMP-activated protein kinase (AMPK) is an αßγ heterotrimer conserved throughout evolution and important for energy sensing in all eukaryote cells. AMPK controls metabolism and various cellular events in response to both hormones and changes in cellular energy status. The γ subunit senses intracellular energy status through the competitive binding of AMP and ATP. We show here that targeted disruption of the mouse AMPKγ1 gene (Prkag1) causes regenerative hemolytic anemia by increasing the sequestration of abnormal erythrocytes. Prkag1(-/-) mice displayed splenomegaly and iron accumulation due to compensatory splenic erythropoiesis and erythrophagocytosis. Moreover, AMPKγ1-deficient erythrocytes were highly resistant to osmotic hemolysis and poorly deformable in response to increasing shear stress, consistent with greater membrane rigidity. No change in cytoskeletal protein composition was observed; however, the phosphorylation level of adducin, a protein promoting the binding of spectrin to actin, was higher in AMPKγ1-deficient erythrocytes. Together, these results demonstrate that AMPKγ1 subunit is required for the maintenance of erythrocyte membrane elasticity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Anemia/enzimología , Membrana Eritrocítica/metabolismo , Esplenomegalia/enzimología , Proteínas Quinasas Activadas por AMP/genética , Anemia/sangre , Anemia/genética , Anemia Hemolítica/enzimología , Anemia Hemolítica/genética , Animales , Western Blotting , Elasticidad , Eritroblastos/metabolismo , Eritroblastos/patología , Recuento de Eritrocitos , Deformación Eritrocítica , Femenino , Hiperplasia , Hierro/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Bazo/metabolismo , Bazo/patología , Esplenomegalia/sangre , Esplenomegalia/genética
5.
Cell Metab ; 15(1): 25-37, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22225874

RESUMEN

Adult skeletal muscles adapt their fiber size to workload. We show that serum response factor (Srf) is required for satellite cell-mediated hypertrophic muscle growth. Deletion of Srf from myofibers and not satellite cells blunts overload-induced hypertrophy, and impairs satellite cell proliferation and recruitment to pre-existing fibers. We reveal a gene network in which Srf within myofibers modulates interleukin-6 and cyclooxygenase-2/interleukin-4 expressions and therefore exerts a paracrine control of satellite cell functions. In Srf-deleted muscles, in vivo overexpression of interleukin-6 is sufficient to restore satellite cell proliferation but not satellite cell fusion and overall growth. In contrast cyclooxygenase-2/interleukin-4 overexpression rescue satellite cell recruitment and muscle growth without affecting satellite cell proliferation, identifying altered fusion as the limiting cellular event. These findings unravel a role for Srf in the translation of mechanical cues applied to myofibers into paracrine signals, which in turn will modulate satellite cell functions and support muscle growth.


Asunto(s)
Músculo Esquelético/patología , Comunicación Paracrina , Células Satélite del Músculo Esquelético/metabolismo , Factor de Respuesta Sérica/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Femenino , Vectores Genéticos/metabolismo , Hipertrofia , Interleucina-4/genética , Interleucina-4/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/fisiología , Factor de Respuesta Sérica/genética
6.
PLoS One ; 6(12): e28981, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22194967

RESUMEN

BACKGROUND: Permanent fatty acid translocase (FAT/)CD36 relocation has previously been shown to be related to abnormal lipid accumulation in the skeletal muscle of type 2 diabetic patients, however mechanisms responsible for the regulation of FAT/CD36 expression and localization are not well characterized in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: Primary muscle cells derived from obese type 2 diabetic patients (OBT2D) and from healthy subjects (Control) were used to examine the regulation of FAT/CD36. We showed that compared to Control myotubes, FAT/CD36 was continuously cycling between intracellular compartments and the cell surface in OBT2D myotubes, independently of lipid raft association, leading to increased cell surface FAT/CD36 localization and lipid accumulation. Moreover, we showed that FAT/CD36 cycling and lipid accumulation were specific to myotubes and were not observed in reserve cells. However, in Control myotubes, the induction of FAT/CD36 membrane translocation by the activation of (AMP)-activated protein kinase (AMPK) pathway did not increase lipid accumulation. This result can be explained by the fact that pharmacological activation of AMPK leads to increased mitochondrial beta-oxidation in Control cells. CONCLUSION/SIGNIFICANCE: Lipid accumulation in myotubes derived from obese type 2 diabetic patients arises from abnormal FAT/CD36 cycling while lipid accumulation in Control cells results from an equilibrium between lipid uptake and oxidation. As such, inhibiting FAT/CD36 cycling in the skeletal muscle of obese type 2 diabetic patients should be sufficient to diminish lipid accumulation.


Asunto(s)
Cadherinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Endocitosis , Metabolismo de los Lípidos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Diferenciación Celular/efectos de los fármacos , Endocitosis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Insulina/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Persona de Mediana Edad , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/patología , Oxidación-Reducción/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ribonucleótidos/farmacología
7.
J Clin Invest ; 120(7): 2355-69, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20577053

RESUMEN

Metformin is widely used to treat hyperglycemia in individuals with type 2 diabetes. Recently the LKB1/AMP-activated protein kinase (LKB1/AMPK) pathway was proposed to mediate the action of metformin on hepatic gluconeogenesis. However, the molecular mechanism by which this pathway operates had remained elusive. Surprisingly, here we have found that in mice lacking AMPK in the liver, blood glucose levels were comparable to those in wild-type mice, and the hypoglycemic effect of metformin was maintained. Hepatocytes lacking AMPK displayed normal glucose production and gluconeogenic gene expression compared with wild-type hepatocytes. In contrast, gluconeogenesis was upregulated in LKB1-deficient hepatocytes. Metformin decreased expression of the gene encoding the catalytic subunit of glucose-6-phosphatase (G6Pase), while cytosolic phosphoenolpyruvate carboxykinase (Pepck) gene expression was unaffected in wild-type, AMPK-deficient, and LKB1-deficient hepatocytes. Surprisingly, metformin-induced inhibition of glucose production was amplified in both AMPK- and LKB1-deficient compared with wild-type hepatocytes. This inhibition correlated in a dose-dependent manner with a reduction in intracellular ATP content, which is crucial for glucose production. Moreover, metformin-induced inhibition of glucose production was preserved under forced expression of gluconeogenic genes through PPARgamma coactivator 1alpha (PGC-1alpha) overexpression, indicating that metformin suppresses gluconeogenesis via a transcription-independent process. In conclusion, we demonstrate that metformin inhibits hepatic gluconeogenesis in an LKB1- and AMPK-independent manner via a decrease in hepatic energy state.


Asunto(s)
Gluconeogénesis/efectos de los fármacos , Hipoglucemiantes/farmacología , Hígado/metabolismo , Metformina/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Gluconeogénesis/genética , Glucosa/genética , Glucosa/metabolismo , Glucosa/farmacología , Glucosa-6-Fosfatasa/biosíntesis , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Hepatocitos/metabolismo , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hipoglucemiantes/metabolismo , Hígado/efectos de los fármacos , Metformina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/farmacología , Regulación hacia Arriba/efectos de los fármacos
8.
Diabetes ; 59(11): 2737-46, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20693347

RESUMEN

OBJECTIVE: The induction of obesity, dyslipidemia, and insulin resistance by high-fat diet in rodents can be prevented by n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). We tested a hypothesis whether AMP-activated protein kinase (AMPK) has a role in the beneficial effects of n-3 LC-PUFAs. RESEARCH DESIGN AND METHODS: Mice with a whole-body deletion of the α2 catalytic subunit of AMPK (AMPKα2(-/-)) and their wild-type littermates were fed on either a low-fat chow, or a corn oil-based high-fat diet (cHF), or a cHF diet with 15% lipids replaced by n-3 LC-PUFA concentrate (cHF+F). RESULTS: Feeding a cHF diet induced obesity, dyslipidemia, hepatic steatosis, and whole-body insulin resistance in mice of both genotypes. Although cHF+F feeding increased hepatic AMPKα2 activity, the body weight gain, dyslipidemia, and the accumulation of hepatic triglycerides were prevented by the cHF+F diet to a similar degree in both AMPKα2(-/-) and wild-type mice in ad libitum-fed state. However, preservation of hepatic insulin sensitivity by n-3 LC-PUFAs required functional AMPKα2 and correlated with the induction of adiponectin and reduction in liver diacylglycerol content. Under hyperinsulinemic-euglycemic conditions, AMPKα2 was essential for preserving low levels of both hepatic and plasma triglycerides, as well as plasma free fatty acids, in response to the n-3 LC-PUFA treatment. CONCLUSIONS: Our results show that n-3 LC-PUFAs prevent hepatic insulin resistance in an AMPKα2-dependent manner and support the role of adiponectin and hepatic diacylglycerols in the regulation of insulin sensitivity. AMPKα2 is also essential for hypolipidemic and antisteatotic effects of n-3 LC-PUFA under insulin-stimulated conditions.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados/metabolismo , Hígado/fisiología , Proteínas Quinasas Activadas por AMP/deficiencia , Animales , Técnicas de Cultivo de Célula , Dieta con Restricción de Grasas , Grasas de la Dieta/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Insaturados/farmacología , Técnica de Clampeo de la Glucosa , Hepatocitos/citología , Hepatocitos/fisiología , Hiperinsulinismo , Resistencia a la Insulina , Hígado/efectos de los fármacos , Hígado/enzimología , Síndrome Metabólico/prevención & control , Ratones , Ratones Noqueados , Subunidades de Proteína/metabolismo
9.
Front Biosci (Landmark Ed) ; 14(9): 3380-400, 2009 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-19273282

RESUMEN

Type 2 diabetes is one of the fastest growing public health problems worldwide, resulting from both genetic factors and inadequate adaptation to environmental changes. It is characterized by abnormal glucose and lipid metabolism due in part to resistance to the actions of insulin in skeletal muscle, liver and fat. AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, acts as an integrator of regulatory signals monitoring systemic and cellular energy status. The growing realization that AMPK regulates the coordination of anabolic and catabolic metabolic processes represents an attractive concept for type 2 diabetes therapy. Recent findings showing that pharmacological activation of AMPK improves blood glucose homeostasis, lipid profile and blood pressure in insulin-resistant rodents suggest that this kinase could be a novel therapeutic target in the treatment of type 2 diabetes. Consistent with these results, physical exercise and major classes of antidiabetic drugs have recently been reported to activate AMPK. In the present review, we update these topics and discuss the concept of targeting the AMPK pathway for the treatment of type 2 diabetes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/terapia , Proteínas Quinasas Activadas por AMP/química , Restricción Calórica , Enfermedades Cardiovasculares/enzimología , Enfermedades Cardiovasculares/terapia , Diabetes Mellitus Tipo 2/enzimología , Activación Enzimática , Ejercicio Físico , Glucosa/metabolismo , Homeostasis , Humanos , Islotes Pancreáticos/fisiopatología , Metabolismo de los Lípidos , Conformación Proteica
10.
Front Biosci (Landmark Ed) ; 14(1): 19-44, 2009 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-19273052

RESUMEN

AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, has been proposed to function as a fuel gauge to monitor cellular energy status in response to nutritional environmental variations. AMPK system is a regulator of energy balance that, once activated by low energy status, switches on ATP-producing catabolic pathways (such as fatty acid oxidation and glycolysis), and switches off ATP-consuming anabolic pathways (such as lipogenesis), both by short-term effect on phosphorylation of regulatory proteins and by long-term effect on gene expression. Numerous observations obtained with pharmacological activators and agents that deplete intracellular ATP have been supportive of AMPK playing a role in the control of energy metabolism but none of these studies have provided conclusive evidence. Relatively recent developments in our understanding of precisely how AMPK complexes might operate to control energy metabolism is due in part to the development of transgenic and knockout mouse models. Although there are inevitable caveats with genetic models, some important findings have emerged. In the present review, we discuss recent findings obtained from animal models with inhibition or activation of AMPK signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/química , Tejido Adiposo/enzimología , Animales , Animales Modificados Genéticamente , Vasos Sanguíneos/enzimología , Vasos Sanguíneos/fisiología , Metabolismo Energético , Técnicas de Inactivación de Genes , Humanos , Hipoglucemiantes/farmacología , Hipotálamo/enzimología , Resistencia a la Insulina , Hígado/enzimología , Modelos Animales , Músculo Esquelético/enzimología , Miocardio/enzimología , Conformación Proteica
11.
Lab Invest ; 86(10): 1020-36, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16894357

RESUMEN

The Serum Response Factor (SRF) is widely expressed transcription factor acting at the confluence of multiple signaling pathways and has been implicated in the control of differentiation, growth, and cell death. In the present study, we found that SRF is expressed in the developing and adult pancreas. To explore the possible role of SRF in this organ, we have generated mutant mice with conditional disruption of the Srf gene. Such mutants presented normal development of both the exocrine and endocrine pancreas indicating that SRF is dispensable for pancreas ontogenesis. However, after weaning, these mice developed profound morphological alterations of the exocrine pancreas, which were reminiscent of severe pancreatitis. In these mice, massive acinar injury, Nuclear Factor Kappa B activation and proinflammatory cytokines release led to complete destruction of the exocrine pancreas and its replacement by adipose tissue. Despite these changes, the organization and function of the endocrine islets of Langerhans remained well-preserved. This new animal model of spontaneous pancreatitis could prove a valuable tool to gain further insight into the physiopathology of this disease.


Asunto(s)
Páncreas Exocrino/fisiopatología , Pancreatitis/fisiopatología , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/fisiología , Animales , Modelos Animales de Enfermedad , Islotes Pancreáticos/fisiología , Ratones , Ratones Transgénicos , FN-kappa B/metabolismo , Páncreas Exocrino/patología , Pancreatitis/inmunología , Pancreatitis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA