Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Angew Chem Int Ed Engl ; : e202408356, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842465

RESUMEN

Rhodium complexes in the -I and 0 oxidation states are of great potential interest in catalytic applications. In contrast to their rhodium +I congeners, however, the structural and electronic parameters governing their access and stability are far less understood. Herein, we investigate the two-electron reduction of a parameterized series of bis(diphosphine) Rh complexes [Rh(dxpy)2]NTf2 (x = P-substituent, y = alkanediyl bridging P atoms). Through (electro)reductions from the RhI parents, Rh-I d10-complexes were obtained and characterized spectroscopically, including 103Rh NMR data. The reductive steps convolute with structural rearrangements from square planar to tetrahedral coordination. We found that the extent of these reorganisations defines whether the first E0(RhI/0) and second E0(Rh0/-I) reduction potentials are normally ordered, leading to monoelectronic stepwise events, or inverted, giving bielectronic transitions. Reductionist approaches based on Hammett parameters or the P-Rh-P bite angles provide only partial correlations with the redox potentials. However, we identified the C-O stretch of analogue diphosphine complexes as an expedient computational parameter that enables these correlations through both electronic and geometric features, even in a predictive manner. Gaining control over two-electron reduction behaviors through rationalized ligand effects has potential impact beyond Rh complexes, for molecular and enzymatic metal sites commonly exhibiting bielectronic transitions.

2.
Chemistry ; 28(23): e202104375, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35188311

RESUMEN

The potential of Pd/Pt complexes for catalytic carboxylation of arenes with CO2 is investigated by means of computational chemistry. Recently we reported that the bis[(2-methoxyphenyl)phosphino]-benzenesulfonamido palladium complex 1 inserts CO2 reversibly in its Pd-C(aryl) bond generating carboxylato complex 2. In the present work we study how geometric and electronic factors of various ligands and substrates influence the overall activation barrier (energy span, ES) of a potential catalytic cycle for arene carboxylation comprising this elementary step. The tendency of the key intermediates to dimerize and thus deactivating the potential catalysts is examined as well as the role of the base, which inevitably is needed to stabilize the reaction product. We show that Pd and Pt complexes I(Pd)-L16-S1 and I(Pt)-L16-S1 do not dimerize, enable the computation of complete catalytic cycles, and show interestingly low ES values of 26.8 and 24.5 kcal/mol, respectively.

3.
Angew Chem Int Ed Engl ; 59(1): 215-220, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31651071

RESUMEN

Highly selective ß-methylation of alcohols was achieved using an earth-abundant first row transition metal in the air stable molecular manganese complex [Mn(CO)2 Br[HN(C2 H4 Pi Pr2 )2 ]] 1 ([HN(C2 H4 Pi Pr2 )2 ]=MACHO-i Pr). The reaction requires only low loadings of 1 (0.5 mol %), methanolate as base and MeOH as methylation reagent as well as solvent. Various alcohols were ß-methylated with very good selectivity (>99 %) and excellent yield (up to 94 %). Biomass derived aliphatic alcohols and diols were also selectively methylated on the ß-position, opening a pathway to "biohybrid" molecules constructed entirely from non-fossil carbon. Mechanistic studies indicate that the reaction proceeds through a borrowing hydrogen pathway involving metal-ligand cooperation at the Mn-pincer complex. This transformation provides a convenient, economical, and environmentally benign pathway for the selective C-C bond formation with potential applications for the preparation of advanced biofuels, fine chemicals, and biologically active molecules.

4.
J Am Chem Soc ; 140(28): 8662-8666, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29956921

RESUMEN

A ruthenium(II) complex bearing a naphthyridine-functionalized pyrazole ligand catalyzes oxidant-free and acceptorless selective double dehydrogenation of primary amines to nitriles at moderate temperature. The role of the proton-responsive entity on the ligand scaffold is demonstrated by control experiments, including the use of a N-methylated pyrazole analogue. DFT calculations reveal intricate hydride and proton transfers to achieve the overall elimination of 2 equiv of H2.

5.
Angew Chem Int Ed Engl ; 57(41): 13449-13453, 2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-30134081

RESUMEN

Catalytic hydrogenation of cyclic carbonates to diols and methanol was achieved using a molecular catalyst based on earth-abundant manganese. The complex [Mn(CO)2 (Br)[HN(C2 H4 Pi Pr2 )2 ] 1 comprising commercially available MACHO ligand is an effective pre-catalyst operating under relatively mild conditions (T=120 °C, p(H2 )=30-60 bar). Upon activation with NaOt Bu, the formation of coordinatively unsaturated complex [Mn(CO)2 [N(C2 H4 Pi Pr2 )2 )] 5 was spectroscopically verified, which confirmed a kinetically competent intermediate. With the pre-activated complex, turnover numbers up to 620 and 400 were achieved for the formation of the diol and methanol, respectively. Stoichiometric reactions under catalytically relevant conditions provide insight into the stepwise reduction form the CO2 level in carbonates to methanol as final product.

6.
J Comput Chem ; 38(20): 1747-1751, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28556947

RESUMEN

The present contribution assesses the performance of several popular and accurate density functionals, namely B3LYP, BP86, M06, MN12L, mPWPW91, PBE0, and TPSSh toward manganese-based coordination complexes. These compounds show promising properties toward application to catalytic water oxidation. Although manganese with N- and O-biding ligands tends to give rise to high spin complexes, the results show that BP86, mPWPW91, and specially MN12L, tend to yield low-spin complexes. The usage of these functionals for such compounds is, thus, discouraged. All the functionals considered deliver accurate geometries. The present results show, however, that B3LYP delivers geometries deviating from experimental values when compared to the other functionals of the set. M06, PBE0, and TPSSh deliver geometries of similar accuracy, PBE0 outstanding slightly with respect to the other two. © 2017 Wiley Periodicals, Inc.

7.
Chemistry ; 23(50): 11992-12003, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28067968

RESUMEN

While industrial NH3 synthesis based on the Haber-Bosch-process was invented more than a century ago, there is still no molecular catalyst available which reduces N2 in the reaction system N2 /H2 to NH3 . As the many efforts of experimentally working research groups to develop a molecular catalyst for NH3 synthesis from N2 /H2 have led to a variety of stoichiometric reductions it seems justified to undertake the attempt of systematizing the various approaches of how the N2 molecule might be reduced to NH3 with H2 at a transition metal complex. In this contribution therefore a variety of intuition-based concepts are presented with the intention to show how the problem can be approached. While no claim for completeness is made, these concepts intend to generate a working plan for future research. Beyond this, it is suggested that these concepts should be evaluated with regard to experimental feasibility by checking barrier heights of single reaction steps and also by computation of whole catalytic cycles employing density functional theory (DFT) calculations. This serves as a tool which extends the empirically driven search process and expands it by computed insights which can be used to rationalize the various challenges which must be met.

8.
J Am Chem Soc ; 138(1): 433-43, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26713773

RESUMEN

The catalytic hydrogenation of cyclohexene and 1-methylcyclohexene is investigated experimentally and by means of density functional theory (DFT) computations using novel ruthenium Xantphos(Ph) (4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) and Xantphos(Cy) (4,5-bis(dicyclohexylphosphino)-9,9-dimethylxanthene) precatalysts [Ru(Xantphos(Ph))(PhCO2)(Cl)] (1) and [Ru(Xantphos(Cy))(PhCO2)(Cl)] (2), the synthesis, characterization, and crystal structures of which are reported. The intention of this work is to (i) understand the reaction mechanisms on the microscopic level and (ii) compare experimentally observed activation barriers with computed barriers. The Gibbs free activation energy ΔG(⧧) was obtained experimentally with precatalyst 1 from Eyring plots for the hydrogenation of cyclohexene (ΔG(⧧) = 17.2 ± 1.0 kcal/mol) and 1-methylcyclohexene (ΔG(⧧) = 18.8 ± 2.4 kcal/mol), while the Gibbs free activation energy ΔG(⧧) for the hydrogenation of cyclohexene with precatalyst 2 was determined to be 21.1 ± 2.3 kcal/mol. Plausible activation pathways and catalytic cycles were computed in the gas phase (M06-L/def2-SVP). A variety of popular density functionals (ωB97X-D, LC-ωPBE, CAM-B3LYP, B3LYP, B97-D3BJ, B3LYP-D3, BP86-D3, PBE0-D3, M06-L, MN12-L) were used to reoptimize the turnover determining states in the solvent phase (DF/def2-TZVP; IEF-PCM and/or SMD) to investigate how well the experimentally obtained activation barriers can be reproduced by the calculations. The density functionals B97-D3BJ, MN12-L, M06-L, B3LYP-D3, and CAM-B3LYP reproduce the experimentally observed activation barriers for both olefins very well with very small (0.1 kcal/mol) to moderate (3.0 kcal/mol) mean deviations from the experimental values indicating for the field of hydrogenation catalysis most of these functionals to be useful for in silico catalyst design prior to experimental work.

9.
Chemistry ; 22(8): 2624-8, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26711865

RESUMEN

The ionic hydrogenation of N2 with H2 to give NH3 is investigated by means of density functional theory (DFT) computations using a cooperatively acting catalyst system. In this system, N2 binds to a neutral tungsten pincer complex of the type [(PNP)W(N2)3] (PNP=pincer ligand) and is reduced to NH3. The protons and hydride centers necessary for the reduction are delivered by heterolytic cleavage of H2 between the N2-tungsten complex and the cationic rhodium complex [Cp*Rh{2-(2-pyridyl)phenyl}(CH3 CN)](+). Successive transfer of protons and hydrides to the bound N2, as well as all Nx Hy units that occur during the reaction, enable the computation of closed catalytic cycles in the gas and in the solvent phase. By optimizing the pincer ligands of the tungsten complex, energy spans as low as 39.3 kcal mol(-1) could be obtained, which is unprecedented in molecular catalysis for the N2/H2 reaction system.

10.
Angew Chem Int Ed Engl ; 55(31): 8966-9, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27356513

RESUMEN

The novel [Ru(Acriphos)(PPh3 )(Cl)(PhCO2 )] [1; Acriphos=4,5-bis(diphenylphosphino)acridine] is an excellent precatalyst for the hydrogenation of CO2 to give formic acid in dimethyl sulfoxide (DMSO) and DMSO/H2 O without the need for amine bases as co-reagents. Turnover numbers (TONs) of up to 4200 and turnover frequencies (TOFs) of up to 260 h(-1) were achieved, thus rendering 1 one of the most active catalysts for CO2 hydrogenations under additive-free conditions reported to date. The thermodynamic stabilization of the reaction product by the reaction medium, through hydrogen bonds between formic acid and clusters of solvent or water, were rationalized by DFT calculations. The relatively low final concentration of formic acid obtained experimentally under catalytic conditions (0.33 mol L(-1) ) was shown to be limited by product-dependent catalyst inhibition rather than thermodynamic limits, and could be overcome by addition of small amounts of acetate buffer, thus leading to a maximum concentration of free formic acid of 1.27 mol L(-1) , which corresponds to optimized values of TON=16×10(3) and TOFavg ≈10(3)  h(-1) .

11.
J Am Chem Soc ; 136(38): 13217-25, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25208046

RESUMEN

The complex [Ru(Triphos)(TMM)] (Triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane, TMM = trimethylene methane) provides an efficient catalytic system for the hydrogenation of a broad range of challenging functionalities encompassing carboxylic esters, amides, carboxylic acids, carbonates, and urea derivatives. The key control factor for this unique substrate scope results from selective activation to generate either the neutral species [Ru(Triphos)(Solvent)H2] or the cationic intermediate [Ru(Triphos)(Solvent)(H)(H2)](+) in the presence of an acid additive. Multinuclear NMR spectroscopic studies demonstrated together with DFT investigations that the neutral species generally provides lower energy pathways for the multistep reduction cascades comprising hydrogen transfer to C═O groups and C-O bond cleavage. Carboxylic esters, lactones, anhydrides, secondary amides, and carboxylic acids were hydrogenated in good to excellent yields under these conditions. The formation of the catalytically inactive complexes [Ru(Triphos)(CO)H2] and [Ru(Triphos)(µ-H)]2 was identified as major deactivation pathways. The former complex results from substrate-dependent decarbonylation and constitutes a major limitation for the substrate scope under the neutral conditions. The deactivation via the carbonyl complex can be suppressed by addition of catalytic amounts of acids comprising non-coordinating anions such as HNTf2 (bis(trifluoromethane)sulfonimide). Although the corresponding cationic cycle shows higher overall barriers of activation, it provides a powerful hydrogenation pathway at elevated temperatures, enabling the selective reduction of primary amides, carbonates, and ureas in high yields. Thus, the complex [Ru(Triphos)(TMM)] provides a unique platform for the rational selection of reaction conditions for the selective hydrogenation of challenging functional groups and opens novel synthetic pathways for the utilization of renewable carbon sources.

12.
Dalton Trans ; 53(18): 7890-7898, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38634911

RESUMEN

This density functional theory (DFT) study explores the efficacy of cooperative catalytic systems in enabling the ionic hydrogenation of N2 with H2, leading to NH3 formation. A set of N-heterocyclic carbene-based pincer tungsten/molybdenum metal complexes of the form [(PCP)M1(H)2] (M1 = W/Mo) were chosen to bind N2 at the respective metal centres. Simultaneously, cationic rhodium/iridium complexes of type [Cp*M2{2-(2-pyridyl)phenyl}(CH3CN)]+ (Cp* = C5(CH3)5 and M2 = Rh/Ir), are employed as cooperative coordination partners for heterolytic H2 splitting. The stepwise transfer of protons and hydrides to the bound N2 and intermediate NxHy units results in the formation of NH3. Interestingly, the calculated results reveal an encouraging low range of energy spans ranging from ∼30 to 42 kcal mol-1 depending on different combinations of ligands and metal complexes. The optimal combination of pincer ligand and metal center allowed for an energy span of unprecedented 29.7 kcal mol-1 demonstrating significant potential for molecular catalysts for the N2/H2 reaction system. While exploring obvious potential off-cycle reactions leading to catalyst deactivation, the computed results indicate that no increase in energy span would need to be expected.

13.
J Am Chem Soc ; 135(6): 2104-7, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23360380

RESUMEN

The synthesis of a novel class of bifunctional ruthenium hydride complexes incorporating Lewis acidic BR(2) moieties is reported. Determination of the molecular structures in the solid state and in solution provided evidence for tunable interaction between the two functionalities. Cooperative effects on the reactivity of the complexes were demonstrated including the activation of small Lewis basic molecules by reversible anchoring at the boron center.


Asunto(s)
Hidrógeno/química , Ácidos de Lewis/química , Compuestos Organometálicos/química , Rutenio/química , Termodinámica , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química
14.
Chemistry ; 19(3): 1020-7, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23297088

RESUMEN

Very few cases of oxidative addition of NH(3) to transition-metal complexes forming terminal amide hydrides have been experimentally observed. Here, two examples with the iridium pincer complexes [Ir(PCP)(NH(3))] A1 with PCP = [κ(3)-(tBu(2)P-C(2)H(4))(2)CH](-) and [Ir(PSiP)(NH(3))] B1 with PSiP = [κ(3)-(2-Cy(2)P-C(6)H(4))(2)SiMe](-) were investigated by DFT calculations applying the M06L density functional to successfully reproduce the trend of the experimentally observed thermochemical stabilities. According to the calculations, the corresponding hydrido-amido complexes A2 and B2 are more stable than the corresponding ammine complexes by ΔG = -2.8 and -2.6 kcal mol(-1), respectively. Complexes such as A2 and B2 are ideally suited entry points to catalytic cycles for the hydroamination of ethylene with ammonia. Therefore, the relevant stationary points of the potentially available cycles were studied computationally to verify if these complexes can catalyze the hydroamination. As a result, complex A2 will clearly not catalyze the hydroamination as all energy spans calculated range close to 40 kcal mol(-1) or higher. The energy spans obtained with B2 are significantly lower in some cases and range around 35 kcal mol(-1), further indicating that no turnover can be expected. By systematically varying the structure of B2, the energy span could be reduced to 28.8 kcal mol(-1) corresponding to a TOF of 17 h(-1) at a reaction temperature of 140 °C. A reoptimization of relevant structures under the inclusion of cyclohexane as a typical solvent reduces the calculated TOF to 6.0 h(-1).

15.
Sci Adv ; 9(5): eadf2966, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36735781

RESUMEN

The carboxylation of nonactivated C─H bonds provides an attractive yet hitherto largely elusive chemical process to synthesize carboxylic acids by incorporation of CO2 into the chemical value chain. Here, we report on the realization of such a reaction using simple and nonactivated arenes as starting materials. A computationally designed Pd(II) complex acts as organometallic single-component catalyst, and apart from a base, necessary for thermodynamic stabilization of the intermediates, no other additives or coreagents are required. Turnover numbers up to 102 and high regioselectivities are achieved. The potential of this catalytic reaction for "green chemistry" is demonstrated by the synthesis of veratric acid, an intermediate for pharmaceutical production, from CO2 and veratrol.

16.
J Am Chem Soc ; 134(35): 14349-52, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22913738

RESUMEN

The nonclassical ruthenium hydride pincer complex [Ru(PNP)(H)(2)(H(2))] 1 (PNP = 1,3-bis(di-tert-butyl-phosphinomethyl)pyridine) catalyzes the anti-Markovnikov addition of pinacolborane to terminal alkynes yielding Z-vinylboronates at mild conditions. The complex [Ru(PNP)(H)(2)(HBpin)] 2 (HBpin = pinacolborane), which was identified at the end of the reaction and prepared independently, is proposed as the direct precursor to the catalytic cycle involving rearrangement of coordinated alkyne to Z-vinylidene as a key step for the apparent trans-hydroboration.

17.
Chemistry ; 18(1): 170-7, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22144068

RESUMEN

A prototypical catalytic cycle for the direct carboxylation of unactivated arene C-H bonds with CO(2) based on ruthenium(II) pincer complexes as catalysts is proposed and investigated by density functional theory (DFT) methods. The energetic span model is used to predict the turnover frequency (TOF) of various potential catalysts, evaluating their efficiency for this reaction. In addition to modifications of the catalyst structure, we also investigated the effect of the substrate, the solvent, and the influence of a base on the thermodynamics and kinetics of the reaction. Turnover frequencies in the range of 10(5)-10(7) h(-1) are predicted for the best systems. Alternative reaction pathways that might prevent the reaction are also investigated. In all cases, either the respective intermediates are found to be unstable or activation barriers are found to be very high, thereby indicating that these alternative pathways will not interfere with the proposed catalytic cycle. As a result, several ruthenium pincer complexes are suggested as very promising candidates for experimental investigation as catalysts for the carboxylation of arene C-H bonds with CO(2).

18.
J Am Chem Soc ; 133(36): 14349-58, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21786816

RESUMEN

Selective hydrogenation of biogenic carboxylic acids is an important transformation for biorefinery concepts based on platform chemicals. We herein report a mechanistic study on the homogeneously ruthenium/phosphine catalyzed transformations of levulinic acid (LA) and itaconic acid (IA) to the corresponding lactones, diols, and cyclic ethers. A density functional theory (DFT) study was performed and corroborated with experimental data from catalytic processes and NMR investigations. For [Ru(TriPhos)H](+) as the catalytically active unit, a common mechanistic pathway for the reduction of the C═O functionality in aldehydes, ketones, lactones, and even free carboxylic acids could be identified. Hydride transfer from the Ru-H group to the carbonyl or carboxyl carbon is followed by protonation of the resulting Ru-O unit via σ-bond metathesis from a coordinated dihydrogen molecule. The energetic spans for the reduction of the different functional groups increase in the order aldehyde < ketone < lactone ≈ carboxylic acid. This reactivity pattern as well as the absolute values are in full agreement with experimentally observed activities and selectivities, forming a rational basis for further catalyst development.


Asunto(s)
Ácidos Levulínicos/química , Compuestos de Rutenio/química , Succinatos/química , Catálisis , Éteres Cíclicos/síntesis química , Hidrogenación , Lactonas/síntesis química
19.
Chemistry ; 17(37): 10329-38, 2011 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-21850715

RESUMEN

Catalytic carboxylation reactions that use CO(2) as a C1 building block are still among the 'dream reactions' of molecular catalysis. To obtain a deeper insight into the factors that control the fundamental steps of potential catalytic cycles, we performed a detailed computational study of the insertion reaction of CO(2) into rhodium-alkyl bonds. The minima and transition-state geometries for 38 pincer-type complexes were characterized and the according energies for the C-C bond-forming step were determined. The electronic properties of the Rh-alkyl bond were found to be more important for the magnitude of the activation barrier than the interaction between rhodium and CO(2). The charge of the alkyl-chain carbon atom, as well as agostic and orbital interactions with the rhodium, exhibit the most pronounced influence on the energy of the transition states for the CO(2) insertion reaction. By varying the backbone and the donor groups of the pincer ligand those properties can be tuned over a very broad range. Thus, it is possible to match the electronic and steric properties with the fundamental requirements of the CO(2) insertion into rhodium-alkyl bonds of the ligand framework.

20.
Chemistry ; 16(30): 9203-14, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20583057

RESUMEN

The catalytic hydroamination of ethylene with ammonia was investigated by means of density functional theory (DFT) calculations. An initial computational screening of key reaction steps (C-N bond formation, N-H bond cleavage), which are assumed to be part of a catalytic cycle, was carried out for complexes with the [M(L)]-complex fragment (M=Rh, Ir; L=NCN, PCP; NCN=2,5-bis(dimethylaminomethyl)benzene, PCP=2,5-bis- (dimethylphosphanylmethyl)benzene). Based on the evaluation of activation barriers, this screening showed the rhodium compound with the NCN ligand to be the most promising catalyst system. A detailed investigation was carried out starting with the hypothetical catalyst precursor [Rh(NCN)(H)(2)(H(2))] (1). A variety of activation pathways to yield the catalytically active species [Rh(NCN)(H)(NH(2))] (5), as well as [Rh(NCN)(C(2)H(5))(NH(2))] (17), were identified. With 5 and 17 several closed catalytic cycles could be calculated. One of the calculated cycles is favoured kinetically and bond-forming events have activation barriers low enough to be put into practice. The calculations also show that for experimental realisation the synthesis of 1 is not necessary, as the synthesis of 17 would establish an active catalyst directly without the need for activation. Oligomerisation of ethylene would be possible in principle and would be expected as a competitive side reaction. Accordingly not only ethylamine would be observed in an experimental system, as amines with longer carbon chains also can be formed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA