Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chem Rev ; 122(12): 10777-10820, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34928131

RESUMEN

Implicit solvation is an effective, highly coarse-grained approach in atomic-scale simulations to account for a surrounding liquid electrolyte on the level of a continuous polarizable medium. Originating in molecular chemistry with finite solutes, implicit solvation techniques are now increasingly used in the context of first-principles modeling of electrochemistry and electrocatalysis at extended (often metallic) electrodes. The prevalent ansatz to model the latter electrodes and the reactive surface chemistry at them through slabs in periodic boundary condition supercells brings its specific challenges. Foremost this concerns the difficulty of describing the entire double layer forming at the electrified solid-liquid interface (SLI) within supercell sizes tractable by commonly employed density functional theory (DFT). We review liquid solvation methodology from this specific application angle, highlighting in particular its use in the widespread ab initio thermodynamics approach to surface catalysis. Notably, implicit solvation can be employed to mimic a polarization of the electrode's electronic density under the applied potential and the concomitant capacitive charging of the entire double layer beyond the limitations of the employed DFT supercell. Most critical for continuing advances of this effective methodology for the SLI context is the lack of pertinent (experimental or high-level theoretical) reference data needed for parametrization.

2.
J Chem Phys ; 159(19)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37966001

RESUMEN

The free energy cost of forming a cavity in a solvent is a fundamental concept in rationalizing the solvation of molecules and ions. A detailed understanding of the factors governing cavity formation in bulk solutions has inter alia enabled the formulation of models that account for this contribution in coarse-grained implicit solvation methods. Here, we employ classical molecular dynamics simulations and multistate Bennett acceptance ratio free energy sampling to systematically study cavity formation at a wide range of metal-water interfaces. We demonstrate that the obtained size- and position-dependence of cavitation energies can be fully rationalized by a geometric Gibbs model, which considers that the creation of the metal-cavity interface necessarily involves the removal of interfacial solvent. This so-called competitive adsorption effect introduces a substrate dependence to the interfacial cavity formation energy that is missed in existing bulk cavitation models. Using expressions from scaled particle theory, this substrate dependence is quantitatively reproduced by the Gibbs model through simple linear relations with the adsorption energy of a single water molecule. Besides providing a better general understanding of interfacial solvation, this paves the way for the derivation and efficient parametrization of more accurate interface-aware implicit solvation models needed for reliable high-throughput calculations toward improved electrocatalysts.

3.
J Chem Phys ; 155(19): 194702, 2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34800953

RESUMEN

An accurate atomistic treatment of aqueous solid-liquid interfaces necessitates the explicit description of interfacial water ideally via ab initio molecular dynamics simulations. Many applications, however, still rely on static interfacial water models, e.g., for the computation of (electro)chemical reaction barriers and focus on a single, prototypical structure. In this work, we systematically study the relation between density functional theory-derived static and dynamic interfacial water models with specific focus on the water-Pt(111) interface. We first introduce a general construction protocol for static 2D water layers on any substrate, which we apply to the low index surfaces of Pt. Subsequently, we compare these with structures from a broad selection of reference works based on the Smooth Overlap of Atomic Positions descriptor. The analysis reveals some structural overlap between static and dynamic water ensembles; however, static structures tend to overemphasize the in-plane hydrogen bonding network. This feature is especially pronounced for the widely used low-temperature hexagonal ice-like structure. In addition, a complex relation between structure, work function, and adsorption energy is observed, which suggests that the concentration on single, static water models might introduce systematic biases that are likely reduced by averaging over consistently created structural ensembles, as introduced here.

4.
J Chem Phys ; 150(4): 041730, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30709280

RESUMEN

We discuss grand canonical simulations based on density-functional theory to study the thermodynamic properties of electrochemical interfaces of metallic electrodes in aqueous environments. Water is represented using implicit solvation, here via the self-consistent continuum solvation (SCCS) model, providing a charge-density dependent dielectric boundary. The electrochemical double layer is accounted for in terms of a phenomenological continuum description. It is shown that the experimental potentials of zero charge and interfacial capacitances can be reproduced for an optimized SCCS parameter set [ρmin = 0.0013, ρmax = 0.010 25]. By performing a detailed derivation and analysis of the interface energetics for selected electrochemical systems, we are able to relate the widely used approach of the computational hydrogen electrode (CHE) to a general grand canonical description of electrified interfaces. In particular, charge-neutral CHE results are shown to be an upper-boundary estimate for the grand canonical interfacial free energies. In order to demonstrate the differences between the CHE and full grand canonical calculations, we study the pristine (100), (110), and (111) surfaces for Pt, Au, Cu, and Ag, and H or Cl electrosorbed on Pt. The calculations support the known surface reconstructions in the aqueous solution for Pt and Au. Furthermore, the predicted potential-pH dependence of proton coverage, surface charge, and interfacial pseudocapacitance for Pt is found to be in close agreement with experimental or other theoretical data as well as the predicted equilibrium shapes for Pt nanoparticles. Finally, Cl is found to interact more strongly than H with the interfacial fields, leading to significantly altered interface energetics and structure upon explicit application of an electrode potential. This work underscores the strengths and eventual limits of the CHE approach and might guide further understanding of the thermodynamics of electrified interfaces.

5.
Phys Chem Chem Phys ; 17(8): 5569-73, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25626452

RESUMEN

The structure of tin (Sn) nanoparticles as function of size and temperature has been studied using density functional theory and thermodynamic considerations. It is known that bulk Sn undergoes a transition from the semiconducting α-phase to the metallic ß-phase at temperatures higher than 13.2 °C under atmospheric pressure. Here we show that, independent of temperature, Sn nanoparticles smaller than 8 nm diameter always crystallize in the ß-phase structure in thermodynamic equilibrium, and up to a size of 40 nm of the Sn nanoparticles this metallic phase is stable at all reasonable ambient temperatures (≳-40 °C). The transition to the metallic phase is caused by nanoscale stabilization due to the lower surface energies of the ß phase. This study suggests that the atomic structure and conductivity of nanostructured Sn anodes can change dramatically with size and temperature. This finding has implication for understanding the performance of future Li-based batteries since Sn nanostructures are considered as one of the most promising anode materials, but the mechanism of nanoscale stabilization might be used as a design strategy for other materials.

6.
Chemphyschem ; 15(10): 2058-69, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24867445

RESUMEN

The ionic compounds that are used as electrode materials in Li-based rechargeable batteries can exhibit polar surfaces that in general have high surface energies. We derive an analytical estimate for the surface energy of such polar surfaces assuming charge redistribution as a polarity compensating mechanism. The polar contribution to the converged surface energy is found to be proportional to the bandgap multiplied by the surface charge necessary to compensate for the depolarization field, and some higher order correction terms that depend on the specific surface. Other features, such as convergence behavior, coincide with published results. General conclusions are drawn on how to perform polar surface energy calculations in a slab configuration and upper boundaries of "purely" polar surface energies are estimated. Furthermore, we compare these findings with results obtained in a density functional theory study of Li(2)FeSiO(4) surfaces. We show that typical polar features are observed and provide a decomposition of surface energies into polar and local bond-cutting contributions for 29 different surfaces. We show that the model is able to explain subtle differences of GGA and GGA+U surface energy calculations.

7.
J Chem Theory Comput ; 19(23): 8815-8825, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38038493

RESUMEN

Experimental cyclic voltammograms (CVs) measured in the slow scan rate limit can be entirely described in terms of the thermodynamic equilibrium quantities of the electrified solid-liquid interface. They correspondingly serve as an important benchmark for the quality of first-principles calculations of interfacial thermodynamics. Here, we investigate the partially drastic approximations made presently in computationally efficient calculations for the well-defined showcase of an Ag(100) model electrode in Br-containing electrolytes, where the nontrivial part of the CV stems from the electrosorption of Br ions. We specifically study the entanglement of common approximations in the treatment of solvation and field effects, as well as in the way macroscopic averages of the two key quantities, namely, the potential-dependent adsorbate coverage and electrosorption valency, are derived from the first-principles energetics. We demonstrate that the combination of energetics obtained within an implicit solvation model and a perturbative second order account of capacitive double layer effects with a constant-potential grand-canonical Monte Carlo sampling of the adsorbate layer provides an accurate description of the experimental CV. However, our analysis also shows that error cancellation at lower levels of theory may equally lead to good descriptions even though key underlying physics such as the disorder-order transition of the Br adlayer at increasing coverages is inadequately treated.

8.
J Chem Theory Comput ; 19(22): 8323-8331, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37933878

RESUMEN

The knowledge of electrochemical activation energies under applied potential conditions is a prerequisite for understanding catalytic activity at electrochemical interfaces. Here, we present a new set of methods that can compute electrochemical barriers with accuracy comparable to that of constant potential grand canonical approaches, without the explicit need for a potentiostat. Instead, we Legendre transform a set of constant charge, canonical reaction paths. Additional straightforward approximations offer the possibility to compute electrochemical barriers at a fraction of computational cost and complexity, and the analytical inclusion of geometric response highlights the importance of incorporating electronic as well as the geometric degrees of freedom when evaluating electrochemical barriers.

9.
ACS Catal ; 13(9): 5780-5786, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37180961

RESUMEN

Transition metal carbides, especially Mo2C, are praised to be efficient electrocatalysts to reduce CO2 to valuable hydrocarbons. However, on Mo2C in an aqueous electrolyte, exclusively the competing hydrogen evolution reaction takes place, and this discrepancy to theory was traced back to the formation of a thin oxide layer at the electrode surface. Here, we study the CO2 reduction activity at Mo2C in a non-aqueous electrolyte to avoid such passivation and to determine products and the CO2 reduction reaction pathway. We find a tendency of CO2 to reduce to carbon monoxide. This process is inevitably coupled with the decomposition of acetonitrile to a 3-aminocrotonitrile anion. Furthermore, a unique behavior of the non-aqueous acetonitrile electrolyte is found, where the electrolyte, instead of the electrocatalyst, governs the catalytic selectivity of the CO2 reduction. This is evidenced by in situ electrochemical infrared spectroscopy on different electrocatalysts as well as by density functional theory calculations.

10.
J Chem Theory Comput ; 17(3): 1782-1794, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33606513

RESUMEN

Cyclic voltammograms (CVs) are a central experimental tool for assessing the structure and activity of electrochemical interfaces. Based on a mean-field ansatz for the interface energetics under applied potential conditions, we here derive an ab initio thermodynamics approach to efficiently simulate thermodynamic CVs. All unknown parameters are determined from density functional theory (DFT) calculations coupled to an implicit solvent model. For the showcased CVs of Ag(111) electrodes in halide-anion-containing solutions, these simulations demonstrate the relevance of double-layer contributions to explain experimentally observed differences in peak shapes over the halide series. Only the appropriate account of interfacial charging allows us to capture the differences in equilibrium coverage and total electronic surface charge that cause the varying peak shapes. As a case in point, this analysis demonstrates that prominent features in CVs do not only derive from changes in adsorbate structure or coverage but can also be related to variations of the electrosorption valency. Such double-layer effects are proportional to adsorbate-induced changes in the work function and/or interfacial capacitance. They are thus especially pronounced for electronegative halides and other adsorbates that affect these interface properties. In addition, the analysis allows us to draw conclusions on how the possible inaccuracy of implicit solvation models can indirectly affect the accuracy of other predicted quantities such as CVs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA