RESUMEN
The risk of inducing hypoglycaemia (low blood glucose) constitutes the main challenge associated with insulin therapy for diabetes1,2. Insulin doses must be adjusted to ensure that blood glucose values are within the normal range, but matching insulin doses to fluctuating glucose levels is difficult because even a slightly higher insulin dose than needed can lead to a hypoglycaemic incidence, which can be anything from uncomfortable to life-threatening. It has therefore been a long-standing goal to engineer a glucose-sensitive insulin that can auto-adjust its bioactivity in a reversible manner according to ambient glucose levels to ultimately achieve better glycaemic control while lowering the risk of hypoglycaemia3. Here we report the design and properties of NNC2215, an insulin conjugate with bioactivity that is reversibly responsive to a glucose range relevant for diabetes, as demonstrated in vitro and in vivo. NNC2215 was engineered by conjugating a glucose-binding macrocycle4 and a glucoside to insulin, thereby introducing a switch that can open and close in response to glucose and thereby equilibrate insulin between active and less-active conformations. The insulin receptor affinity for NNC2215 increased 3.2-fold when the glucose concentration was increased from 3 to 20 mM. In animal studies, the glucose-sensitive bioactivity of NNC2215 was demonstrated to lead to protection against hypoglycaemia while partially covering glucose excursions.
Asunto(s)
Glucemia , Glucosa , Hipoglucemia , Insulina , Animales , Femenino , Humanos , Masculino , Ratas , Glucemia/metabolismo , Glucosa/metabolismo , Glucósidos/administración & dosificación , Glucósidos/química , Glucósidos/farmacología , Glucósidos/uso terapéutico , Hipoglucemia/tratamiento farmacológico , Hipoglucemia/metabolismo , Hipoglucemia/inducido químicamente , Insulina/administración & dosificación , Insulina/análogos & derivados , Insulina/metabolismo , Insulina/farmacología , Insulina/uso terapéutico , Receptor de Insulina/metabolismo , Porcinos , Compuestos Macrocíclicos/administración & dosificación , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/uso terapéutico , Ratas Sprague-DawleyRESUMEN
AIMS/HYPOTHESIS: Normalisation of blood glucose in individuals with diabetes is recommended to reduce development of diabetic complications. However, risk of severe hypoglycaemia with intensive insulin therapy is a major obstacle that prevents many individuals with diabetes from obtaining the recommended reduction in HbA1c. Inhibition of glucagon receptor signalling and liver-preferential insulin action have been shown individually to have beneficial effects in preclinical models and individuals with diabetes (i.e. improved glycaemic control), but also have effects that are potential safety risks (i.e. alpha cell hyperplasia in response to glucagon receptor antagonists and increased levels of liver triacylglycerols and plasma alanine aminotransferase activity in response to glucagon receptor antagonists and liver-preferential insulin). We hypothesised that a combination of glucagon inhibition and liver-preferential insulin action in a dual-acting molecule would widen the therapeutic window. By correcting two pathogenic mechanisms (dysregulated glucagon signalling and non-physiological distribution of conventional insulin administered s.c.), we hypothesised that lower doses of each component would be required to obtain sufficient reduction of hyperglycaemia, and that the undesirable effects that have previously been observed for monotreatment with glucagon antagonists and liver-preferential insulin could be avoided. METHODS: A dual-acting glucagon receptor inhibitor and liver-preferential insulin molecule was designed and tested in rodent models (normal rats, rats with streptozotocin-induced hyperglycaemia, db/db mice and mice with diet-induced obesity and streptozotocin-induced hyperglycaemia), allowing detailed characterisation of the pharmacokinetic and pharmacodynamic properties of the dual-acting molecule and relevant control compounds, as well as exploration of how the dual-acting molecule influenced glucagon-induced recovery and spontaneous recovery from acute hypoglycaemia. RESULTS: This molecule normalised blood glucose in diabetic models, and was markedly less prone to induce hypoglycaemia than conventional insulin treatment (approximately 4.6-fold less potent under hypoglycaemic conditions than under normoglycaemic conditions). However, compared to treatment with conventional long-acting insulin, this dual-acting molecule also increased triacylglycerol levels in the liver (approximately 60%), plasma alanine aminotransferase levels (approximately twofold) and alpha cell mass (approximately twofold). CONCLUSIONS/INTERPRETATION: While the dual-acting glucagon receptor inhibitor and liver-preferential insulin molecule showed markedly improved regulation of blood glucose, effects that are potential safety concerns persisted in the pharmacologically relevant dose range.
Asunto(s)
Diabetes Mellitus , Hiperglucemia , Hipoglucemia , Ratas , Animales , Ratones , Insulina/uso terapéutico , Glucagón , Glucemia , Receptores de Glucagón , Alanina Transaminasa , Estreptozocina , Hipoglucemia/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Modelos Animales de Enfermedad , Hígado , Diabetes Mellitus/tratamiento farmacológicoRESUMEN
Strong-binding host-guest pairings in aqueous media have potential as "supramolecular glues" in biomedical techniques, complementing the widely-used (strept)avidin-biotin combination. We have previously found that squaraine dyes are bound very strongly by tetralactam macrocycles possessing anthracenyl units as cavity walls. Here we show that replacing the anthracenes with pentacyclic 5,7,12,14-tetrahydro-5,7,12,14-tetraoxapentacene (TOP) units generates receptors which bind squaraines with increased affinities (around Ka =1010 â m-1 ) and improved selectivities. Binding can be followed through changes to squaraine fluorescence and absorbance. The TOP units are easy to prepare and potentially variable, while the TOP-based receptor shows improved photostability, both in itself and in complex with squaraines. The results suggest that this system could prove valuable in the further development of practical "synthavidin" chemistry.
RESUMEN
B29Nε-lithocholyl-γ-l-ßGlu-desB30 human insulin [NN344] belongs to a group of insulins with fatty acid or sterol modifications. These insulin analogues have been found to form subcutaneous depots upon injection and hereby have a protracted release profile in vivo. In the present study, B29Nε-lithocholyl-γ-l-Glu-desB30 human insulin was investigated using in-solution small-angle X-ray scattering (SAXS) at chemical conditions designed to mimic three stages during treatment in vivo: in-vial/pen, postinjection, and longer times after injection. We found that the specific insulin analogue formed a mixture of mono- and dihexamers under in-vial/pen conditions of low salt and stabilizing phenol. At postinjection, conditions mimicking a subcutaneous depot, B29Nε-lithocholyl-γ-l-Glu-desB30 human insulin, formed very long straight soluble hexamer-based rods stacked along the Zn(II)-axis. The self-assembly was triggered by an increase in salt concentration when going from vial to physiological conditions. Mimicking longer times after injection and the additional removal of phenol caused the length of the rods to decrease significantly. Finally, we found that the self-assembly could be controlled by varying the amount of modification at the interaction interface by making mixed hexamers of B29Nε-lithocholyl-γ-l-Glu-desB30 and desB30 human insulin. This opens extra possibilities for controlling the release profile of very-long-acting insulins.
Asunto(s)
Insulina/análogos & derivados , Insulina/química , Preparaciones de Acción Retardada/química , Humanos , Fenol/química , Sales (Química)/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Rayos X , Zinc/químicaRESUMEN
Ethynylation of various tryptophan-containing peptides and a single model protein was achieved using Waser's reagent, 1-[(triisopropylsilyl)ethynyl]-1,2-benziodoxol-3(1 H)-one (TIPS-EBX), under gold(I) catalysis. It was demonstrated by NMR that the ethynylation occurred selectively at the C2-position of the indole ring of tryptophan. Further, MS/MS showed that the tryptophan residues could be modified selectively with ethynyl functionalities even when the tryptophan was present as a part of the protein. Finally, the terminal alkyne was used to label a model peptide with a fluorophore by means of copper-catalyzed click chemistry.
Asunto(s)
Alquinos/química , Hidrocarburos Yodados/química , Indicadores y Reactivos/química , Compuestos de Organosilicio/química , Péptidos/química , Proteínas/química , Triptófano/química , Catálisis , Química Clic , Oro/química , Espectroscopía de Resonancia MagnéticaRESUMEN
Controlled self-assembly (SA) of proteins offers the possibility to tune their properties or to create new materials. Herein, we present the synthesis of a modified human insulin (HI) with two distinct metal-ion binding sites, one native, the other abiotic, enabling hierarchical SA through coordination with two different metal ions. Selective attachment of an abiotic 2,2'-bipyridine (bipy) ligand to HI, yielding HI-bipy, enabled Zn(II)-binding hexamers to SA into trimers of hexamers, [[HI-bipy]6]3, driven by octahedral coordination to a Fe(II) â ion. The structures were studied in solution by small-angle X-ray scattering and on surfaces with AFM. The abiotic metal ligand had a higher affinity for Fe(II) than Zn(II) â ions, enabling control of the hexamer formation with Zn(II) and the formation of trimers of hexamers with Fe(II) â ions. This precise control of protein SA to give oligomers of oligomers provides nanoscale structures with potential applications in nanomedicine.
Asunto(s)
Compuestos Ferrosos/química , Insulina/química , Nanoestructuras , Zinc/química , Secuencia de Aminoácidos , Microscopía de Fuerza Atómica , Modelos Moleculares , Datos de Secuencia MolecularRESUMEN
PURPOSE: To study the self-association states of insulin degludec and insulin aspart alone and combined in pharmaceutical formulation and under conditions simulating the subcutaneous depot. METHODS: Formulations were made of 0.6 mM degludec at 3 and 5 Zn/6 insulin monomers, and 0.6 mM aspart (2 Zn/6 insulin monomers). Self-association was assessed using size-exclusion chromatography (SEC) monitored by UV and orthogonal reverse-phase chromatography. RESULTS: Simulating pharmaceutical formulation, degludec eluted as dihexamers, whereas aspart eluted as hexamers and monomers. Combining degludec at low zinc with aspart increased dihexamer content, indicating hybrid hexamer formation. At high zinc concentration, however, there was no evidence of this. Simulating the subcutaneous depot by removing preservative, degludec eluted as multihexamers and aspart as monomers. Aspart was incorporated into the multihexamer structures when combined with degludec at low zinc, but there was no such interaction with high-zinc degludec. SEC using progressively diluted concentrations of phenol and m-cresol showed that dissociation of aspart into monomers occurs before the formation of degludec multihexamers. CONCLUSION: Insulins degludec and aspart can be combined without forming hybrid hexamers, but this combinability is dependent on zinc and preservative concentration, and requires that degludec is fully dihexameric before addition of aspart.
Asunto(s)
Hipoglucemiantes/química , Insulina Aspart/química , Insulina de Acción Prolongada/química , Química Farmacéutica , Cromatografía en Gel , Cromatografía de Fase Inversa , Combinación de Medicamentos , Dispersión Dinámica de Luz , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/metabolismo , Inyecciones Subcutáneas , Insulina Aspart/metabolismo , Insulina de Acción Prolongada/administración & dosificación , Insulina de Acción Prolongada/metabolismo , Modelos Biológicos , Conservadores Farmacéuticos/químicaRESUMEN
Insulin derivatives provide new functions that are distinctive from native insulin. We investigated insulin modifications on the C-terminal A chain with insulin receptor (IR) peptide binders and presented a full and potent IR antagonist. We prepared insulin precursors featuring a sortase A (SrtA) recognition sequence, LPETGG, at the C-terminal A chain and used a SrtA-mediated ligation method to synthesize insulin derivatives. The insulin precursor exhibits full IR agonism potency, similar to native human insulin. We explored derivatives with linear IR binding peptides attached to the insulin C-terminal A chain. One insulin derivative with an IR binder (Ins-AC-S2) can fully antagonize IR activation by insulin, as confirmed by cell-based assays. This IR antagonist suppresses insulin-induced hypoglycemia in a streptozotocin-induced diabetic rat model. This study provides a new direction toward insulin antagonist development.
Asunto(s)
Hipoglucemia , Insulina , Ratas , Humanos , Animales , Insulina/metabolismo , Receptor de Insulina/metabolismo , Unión Proteica , Hipoglucemia/inducido químicamente , Hipoglucemia/tratamiento farmacológicoRESUMEN
The self-assembly of biopharmaceutical peptides into multimeric, nanoscale objects, as well as their disassembly to monomers, is central for their mode of action. Here, we describe a bioorthogonal strategy, using a non-native recognition principle, for control of protein self-assembly based on intermolecular fluorous interactions and demonstrate it for the small protein insulin. Perfluorinated alkyl chains of varying length were attached to desB30 human insulin by acylation of the ε-amine of the side-chain of LysB29. The insulin analogues were formulated with Zn(II) and phenol to form hexamers. The self-segregation of fluorous groups directed the insulin hexamers to self-assemble. The structures of the systems were investigated by circular dichroism (CD) spectroscopy and synchrotron small-angle X-ray scattering. Also, the binding affinity to the insulin receptor was measured. Interestingly, varying the length of the perfluoroalkyl chain provided three different scenarios for self-assembly; the short chains hardly affected the native hexameric structure, the medium-length chains induced fractal-like structures with the insulin hexamer as the fundamental building block, while the longest chains lead to the formation of structures with local cylindrical geometry. This hierarchical self-assembly system, which combines Zn(II) mediated hexamer formation with fluorous interactions, is a promising tool to control the formation of high molecular weight complexes of insulin and potentially other proteins.
Asunto(s)
Insulina/química , Dicroismo Circular , Humanos , Espectroscopía de Resonancia Magnética , Conformación Molecular , Dispersión de RadiaciónRESUMEN
Precise control of the oligomeric state of proteins is of central importance for biological function and for the properties of biopharmaceutical drugs. Here, the self-assembly of 2,2'-bipyridine conjugated monomeric insulin analogues, induced through coordination to divalent metal ions, was studied. This protein drug system was designed to form non-native homo-oligomers through selective coordination of two divalent metal ions, Fe(II) and Zn(II), respectively. The insulin type chosen for this study is a variant designed for a reduced tendency toward native dimer formation at physiological concentrations. A small-angle X-ray scattering analysis of the bipyridine-modified insulin system confirmed an organization into a novel well-ordered structure based on insulin trimers, as induced by the addition of Fe(II). In contrast, unmodified monomeric insulin formed larger and more randomly structured assemblies upon addition of Fe(II). The addition of Zn(II), on the other hand, led to the formation of small quantities of insulin hexamers for both the bipyridine-modified and the unmodified monomeric insulin. Interestingly, the location of the bipyridine-modification significantly affects the tendency to hexamer formation as compared to the unmodified insulin. Our study shows how combining a structural study and chemical design can be used to obtain molecular understanding and control of the self-assembly of a protein drug. This knowledge may eventually be employed to develop an optimized in vivo drug release profile.
Asunto(s)
Insulina/química , Hierro/farmacología , Multimerización de Proteína/efectos de los fármacos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Zinc/farmacología , 2,2'-Dipiridil/química , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de ProteínaRESUMEN
PURPOSE: Basal insulins with improved kinetic properties can potentially be produced using acylation by fatty acids that enable soluble, high-molecular weight complexes to form post-injection. A series of insulins, acylated at B29 with fatty acids via glutamic acid spacers, were examined to deduce the structural requirements. METHODS: Self-association, molecular masses and hexameric conformations of the insulins were studied using size exclusion chromatography monitored by UV or multi-angle light scattering and dynamic light scattering, and circular dichroism spectroscopy (CDS) in environments (changing phenol and zinc concentration) simulating a pharmaceutical formulation and changes following subcutaneous injection. RESULTS: With depletion of phenol, insulin degludec and another fatty diacid-insulin analogue formed high molecular mass filament-like complexes, which disintegrated with depletion of zinc. CDS showed these analogues adopting stable T(3)R(3) conformation in presence of phenol and zinc, changing to T(6) with depletion of phenol. These findings suggest insulin degludec is dihexameric in pharmaceutical formulation becoming multihexameric after injection. The analogues showed weak dimeric association, indicating rapid release of monomers following hexamer disassembly. CONCLUSIONS: Insulins can be engineered that remain soluble but become highly self-associated after injection, slowly releasing monomers; this is critically dependent on the acylation moiety. One such analogue, insulin degludec, has therapeutic potential.
Asunto(s)
Hipoglucemiantes/química , Insulina/análogos & derivados , Acilación , Secuencia de Aminoácidos , Cromatografía en Gel , Dicroismo Circular , Ácidos Grasos/química , Humanos , Hipoglucemiantes/metabolismo , Insulina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Albúmina Sérica/metabolismoRESUMEN
l-Glucose has recently been investigated as an artificial sweetener, but no facile method is established for the measurement of l-glucose. The commercial probe Eversense employs a fluorescent diboronate in a small device for the optical monitoring of d-glucose in people with diabetes. Being achiral, the Eversense probe should be able to detect l-glucose as well as native d-glucose, but the probe is designed for fixation under the skin, and our attempts to use the probe at laboratory conditions failed, as the probe was resetting when moved between compartments. We thus designed a water-soluble anthracene diboronate 8 similar to the fluorophore used in Eversense and found 8 to respond well to l-glucose and other carbohydrates and artificial sweeteners, thus enabling measurements of l-glucose with the limit of quantification of 12 µM. Notably, the fluorescent signal of diboronate 8 was largely quenched in buffers with the physiological concentration of albumin (0.5 mM), so the given analytical method would need more optimization to be useful for measuring l-glucose and other carbohydrates in blood samples. We suspect that other diboronate fluorophores from the literature may be similarly quenched if applied in the presence of albumin.
RESUMEN
Self-assembly of proteins mediated by metal ions is crucial in biological systems and a better understanding and novel strategies for its control are important. An abiotic metal ion ligand in a protein offers the prospect of control of the oligomeric state, if a selectivity over binding to the native side chains can be achieved. Insulin binds Zn(II) to form a hexamer, which is important for its storage in vivo and in drug formulations. We have re-engineered an insulin variant to control its self-assembly by covalent attachment of 2,2'-bipyridine. The use of Fe(II) provided chemoselective binding over the native site, forming a homotrimer in a reversible manner, which was easily followed by the characteristic color of the Fe(II) complex. This provided the first well-defined insulin trimer and the first insulin variant for which self-assembly can be followed visually.
Asunto(s)
2,2'-Dipiridil/química , Compuestos Ferrosos/química , Insulina , Insulina/análogos & derivados , Insulina/síntesis química , Insulina/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Zinc/químicaRESUMEN
BACKGROUND: Hypoglycemia, the condition of low blood sugar, is a common occurance in people with diabetes using insulin therapy. Protecting against hypoglycaemia by engineering an insulin preparation that can auto-adjust its biological activity to fluctuating blood glucose levels has been pursued since the 1970s, but despite numerous publications, no system that works well enough for practical use has reached clinical practise. SCOPE OF REVIEW: This review will summarise and scrutinise known approaches for producing glucose-sensitive insulin therapies. Notably, systems described in patent applications will be extensively covered, which has not been the case for earlier reviews of this area. MAJOR CONCLUSIONS: The vast majority of published systems are not suitable for product development, but a few glucose-sensitive insulin concepts have recently reached clinical trials, and there is hope that glucose-sensitive insulin will become available to people with diabetes in the near future.
Asunto(s)
Hipoglucemia/tratamiento farmacológico , Insulina/farmacología , Insulina/uso terapéutico , Animales , Glucemia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Transportador de Glucosa de Tipo 1 , Humanos , Hipoglucemiantes/uso terapéutico , Insulina Glargina , PolímerosRESUMEN
The life-saving discovery of insulin in Toronto in 1921 is one of the most impactful achievements in medical history, at the time being hailed as a miracle treatment for diabetes. The insulin molecule itself, however, is poorly amenable as a pharmacological intervention, and the formidable challenge of optimizing insulin therapy has been ongoing for a century. We review early academic insights into insulin structure and its relation to self-association and receptor binding, as well as recombinant biotechnology, which have all been seminal for drug design. Recent developments have focused on combining genetic and chemical engineering with pharmaceutical optimization to generate ultra-rapid and ultra-long-acting, tissue-selective, or orally delivered insulin analogs. We further discuss these developments and propose that future scientific efforts in molecular engineering include realizing the dream of glucose-responsive insulin delivery.
Asunto(s)
Diabetes Mellitus , Insulina , Diabetes Mellitus/tratamiento farmacológico , Humanos , Insulina/metabolismo , Unión ProteicaRESUMEN
Here, we describe the molecular engineering of insulin icodec to achieve a plasma half-life of 196 h in humans, suitable for once-weekly subcutaneously administration. Insulin icodec is based on re-engineering of the ultra-long oral basal insulin OI338 with a plasma half-life of 70 h in humans. This systematic re-engineering was accomplished by (1) further increasing the albumin binding by changing the fatty diacid from a 1,18-octadecanedioic acid (C18) to a 1,20-icosanedioic acid (C20) and (2) further reducing the insulin receptor affinity by the B16Tyr â His substitution. Insulin icodec was selected by screening for long intravenous plasma half-life in dogs while ensuring glucose-lowering potency following subcutaneous administration in rats. The ensuing structure-activity relationship resulted in insulin icodec. In phase-2 clinical trial, once-weekly insulin icodec provided safe and efficacious glycemic control comparable to once-daily insulin glargine in type 2 diabetes patients. The structure-activity relationship study leading to insulin icodec is presented here.
Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Insulina/farmacología , Animales , Perros , Esquema de Medicación , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química , Inyecciones Intravenosas , Inyecciones Subcutáneas , Insulina/administración & dosificación , Insulina/análogos & derivados , Masculino , Ratas , Ratas Sprague-DawleyRESUMEN
Recently, the first basal oral insulin (OI338) was shown to provide similar treatment outcomes to insulin glargine in a phase 2a clinical trial. Here, we report the engineering of a novel class of basal oral insulin analogues of which OI338, 10, in this publication, was successfully tested in the phase 2a clinical trial. We found that the introduction of two insulin substitutions, A14E and B25H, was needed to provide increased stability toward proteolysis. Ultralong pharmacokinetic profiles were obtained by attaching an albumin-binding side chain derived from octadecanedioic (C18) or icosanedioic acid (C20) to the lysine in position B29. Crucial for obtaining the ultralong PK profile was also a significant reduction of insulin receptor affinity. Oral bioavailability in dogs indicated that C18-based analogues were superior to C20-based analogues. These studies led to the identification of the two clinical candidates OI338 and OI320 (10 and 24, respectively).
Asunto(s)
Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Acilación , Administración Oral , Secuencia de Aminoácidos , Animales , Disponibilidad Biológica , Preparaciones de Acción Retardada , Perros , Semivida , Humanos , Hipoglucemiantes/farmacocinética , Insulina/química , Insulina/farmacocinética , RatasRESUMEN
Backbone cyclic insulin was designed and prepared by reverse proteolysis in partial organic solvent of a single-chain precursor expressed in yeast. The precursor contains two loops to bridge the two chains of native insulin. The cyclisation method uses Achromobacter lyticus protease and should be generally applicable to proteins with C-terminal lysine and proximal N-terminal. The presence of the ring-closing bond and the native insulin disulfide patterns were documented by LC-MS peptide maps. The cyclic insulin was shown to be inert towards degradation by CPY, but was somewhat labile towards chymotrypsin. Intravenous administration of the cyclic insulin to Wistar rats showed the compounds to be equipotent to HI despite much lower insulin receptor affinity.
Asunto(s)
Insulina/análogos & derivados , Péptidos Cíclicos/síntesis química , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Ciclización , Insulina/química , Insulina/farmacología , Espectrometría de Masas , Datos de Secuencia Molecular , Péptidos Cíclicos/farmacología , Ratas , Ratas Wistar , Receptor de Insulina/metabolismoRESUMEN
International charities and health care organizations advocate regular physical activity for health benefit in people with type 1 diabetes. Clinical expert and international diabetes organizations' position statements support the management of good glycemia during acute physical exercise by adjusting exogenous insulin and/or carbohydrate intake. Yet research has detailed, and patients frequently report, variable blood glucose responses following both the same physical exercise session and insulin to carbohydrate alteration. One important source of this variability is insulin delivery to the circulation. With modern insulin analogs, it is important to understand how different insulins, their delivery methods, and inherent physiological factors, influence the reproducibility of insulin absorption from the injection site into circulation. Furthermore, contrary to the adaptive pancreatic response to exercise in the person without diabetes, the physiological and metabolic shifts with exercise may increase circulating insulin concentrations that may contribute to exercise-related hyperinsulinemia and consequent hypoglycemia. Thus, a furthered understanding of factors underpinning insulin delivery may offer more confidence for healthcare professionals and patients when looking to improve management of glycemia around exercise.
Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Ejercicio Físico , Insulina/farmacocinética , Humanos , Piel/metabolismo , TemperaturaRESUMEN
Covalent cross-linking of biomolecules can be useful in pursuit of tissue targeting or dual targeting of two receptors on cell surfaces for avidity effects. Long linkers (>10 kDa) can be advantageous for such purposes, and poly(ethylene glycol) (PEG) linkers are most commonly used due to the high aqueous solubility of PEG and its relative inertness toward biological targets. However, PEG is non-biodegradable, and available PEG linkers longer than 5 kDa are heterogeneous (polydisperse), which means that conjugates based on such materials will be mixtures. We describe here recombinant linkers of distinct lengths, which can be expressed in yeast, which are polar, and which carry orthogonal reactivity at each end of the linker, thus allowing chemoselective cross-linking of proteins. A conjugate between insulin and either of the two trypsin inhibitor peptides/proteins exemplifies the technology, using a GQAP-based linker of molecular weight of 17â¯848, having one amine at the N-terminal, and one Cys, at the C-terminal. Notably, yeast-based expression systems typically give products with mixed disulfides when expressing proteins that are equipped with one unpaired Cys, namely, mixed disulfides with glutathione, free Cys amino acid, and/or a protein homodimer. To obtain a homogeneous linker, we worked out conditions for transforming the linker with mixed disulfides into a linker with a homogeneous disulfide, using excess 4-mercaptophenylacetic acid. Subsequently, the N-terminal amine of the linker was transformed into an azide, and the C-terminal Cys disulfide was reduced to a free thiol and reacted with halo-acetyl insulin. The N-terminal azide was finally conjugated to either of the two types of alkyne-containing trypsin inhibitor peptides/proteins. This reaction sequence allowed the cross-linked proteins to carry internal disulfides, as no reduction step was needed after protein conjugations. The insulin-trypsin inhibitor conjugates were shown to be stabilized toward enzymatic digestions and to have partially retained binding to the insulin receptor.