Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 133(7): 070403, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39213564

RESUMEN

Chiral state transfer along closed loops in the vicinity of an exceptional point is one of the many counterintuitive observations in non-Hermitian physics. The application of this property beyond proof-of-principle in quantum physics, is an open question. In this work, we demonstrate chiral state conversion between singlet and triplet Bell states through fully quantum Liouvillian dynamics. Crucially, we demonstrate that this property can be used for the chiral production of Bell states from separable states with a high fidelity and for a large range of parameters. Additionally, we show that the removal of quantum jumps from the dynamics through postselection can result in near-perfect Bell states from initially separable states. Our work presents the first application of chiral state transfer in quantum information processing and demonstrates a novel way to control entangled states by means of dissipation engineering.

2.
Entropy (Basel) ; 26(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38920506

RESUMEN

Entanglement engines are autonomous quantum thermal machines designed to generate entanglement from the presence of a particle current flowing through the device. In this work, we investigate the functioning of a two-qubit entanglement engine beyond the steady-state regime. Within a master equation approach, we derive the time-dependent state, the particle current, as well as the associated current correlation functions. Our findings establish a direct connection between coherence and internal current, elucidating the existence of a critical current that serves as an indicator for entanglement in the steady state. We then apply our results to investigate kinetic uncertainty relations (KURs) at finite times. We demonstrate that there is more than one possible definition for KURs at finite times. Although the two definitions agree in the steady-state regime, they lead to different parameter ranges for violating KUR at finite times.

3.
Phys Rev Lett ; 127(10): 100601, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34533344

RESUMEN

We present a collision model for the charging of a quantum battery by identical nonequilibrium qubit units. When the units are prepared in a mixture of energy eigenstates, the energy gain in the battery can be described by a classical random walk, where both average energy and variance grow linearly with time. Conversely, when the qubits contain quantum coherence, interference effects buildup in the battery and lead to a faster spreading of the energy distribution, reminiscent of a quantum random walk. This can be exploited for faster and more efficient charging of a battery initialized in the ground state. Specifically, we show that coherent protocols can yield higher charging power than any possible incoherent strategy, demonstrating a quantum speed-up at the level of a single battery. Finally, we characterize the amount of extractable work from the battery through the notion of ergotropy.

4.
Phys Rev Lett ; 123(17): 170605, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31702237

RESUMEN

Cooling quantum systems is arguably one of the most important thermodynamic tasks connected to modern quantum technologies and an interesting question from a foundational perspective. It is thus of no surprise that many different theoretical cooling schemes have been proposed, differing in the assumed control paradigm and complexity, and operating either in a single cycle or in steady state limits. Working out bounds on quantum cooling has since been a highly context dependent task with multiple answers, with no general result that holds independent of assumptions. In this Letter we derive a universal bound for cooling quantum systems in the limit of infinite cycles (or steady state regimes) that is valid for any control paradigm and machine size. The bound only depends on a single parameter of the refrigerator and is theoretically attainable in all control paradigms. For qubit targets we prove that this bound is achievable in a single cycle and by autonomous machines.

5.
Phys Rev Lett ; 118(9): 097701, 2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-28306300

RESUMEN

The oscillatory interlayer exchange interaction between two magnetic layers separated by a metallic spacer is one of the few coherent quantum phenomena that persists at room temperature. Here, we show that this interaction can be controlled dynamically by illuminating the sample (e.g., a spin valve) with radiation in the 10-100 THz range. We predict that the exchange interaction can be changed from ferromagnetic to antiferromagnetic (and vice versa) by tuning the amplitude and/or the frequency of the radiation. Our chief theoretical result is an expression that relates the dynamical exchange interaction to the static one that has already been extensively measured.

6.
Phys Rev Lett ; 108(18): 186806, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22681105

RESUMEN

Electron transport in mesoscopic conductors has traditionally involved investigations of the mean current and the fluctuations of the current. A complementary view on charge transport is provided by the distribution of waiting times between charge carriers, but a proper theoretical framework for coherent electronic systems has so far been lacking. Here we develop a quantum theory of electron waiting times in mesoscopic conductors expressed by a compact determinant formula. We illustrate our methodology by calculating the waiting time distribution for a quantum point contact and find a crossover from Wigner-Dyson statistics at full transmission to Poisson statistics close to pinch-off. Even when the low-frequency transport is noiseless, the electrons are not equally spaced in time due to their inherent wave nature. We discuss the implications for renewal theory in mesoscopic systems and point out several analogies with level spacing statistics and random matrix theory.

7.
J Stat Phys ; 183(1): 17, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720182

RESUMEN

This paper is devoted to the analysis of Lindblad operators of Quantum Reset Models, describing the effective dynamics of tri-partite quantum systems subject to stochastic resets. We consider a chain of three independent subsystems, coupled by a Hamiltonian term. The two subsystems at each end of the chain are driven, independently from each other, by a reset Lindbladian, while the center system is driven by a Hamiltonian. Under generic assumptions on the coupling term, we prove the existence of a unique steady state for the perturbed reset Lindbladian, analytic in the coupling constant. We further analyze the large times dynamics of the corresponding CPTP Markov semigroup that describes the approach to the steady state. We illustrate these results with concrete examples corresponding to realistic open quantum systems.

8.
Phys Rev E ; 100(4-1): 042130, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31770926

RESUMEN

In classical thermodynamics the work cost of control can typically be neglected. On the contrary, in quantum thermodynamics the cost of control constitutes a fundamental contribution to the total work cost. Here, focusing on quantum refrigeration, we investigate how the level of control determines the fundamental limits to cooling and how much work is expended in the corresponding process. We compare two extremal levels of control: first, coherent operations, where the entropy of the resource is left unchanged, and, second, incoherent operations, where only energy at maximum entropy (i.e., heat) is extracted from the resource. For minimal machines, we find that the lowest achievable temperature and associated work cost depend strongly on the type of control, in both single-cycle and asymptotic regimes. We also extend our analysis to general machines. Our work provides a unified picture of the different approaches to quantum refrigeration developed in the literature, including algorithmic cooling, autonomous quantum refrigerators, and the resource theory of quantum thermodynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA