Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Purinergic Signal ; 17(4): 713-724, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34604944

RESUMEN

Sepsis is life-threatening organ dysfunction caused by a dysregulated inflammatory and immune response to infection. Sepsis involves the combination of exaggerated inflammation and immune suppression. During systemic infection and sepsis, the liver works as a lymphoid organ with key functions in regulating the immune response. Extracellular nucleotides are considered damage-associated molecular patterns and are involved in the control of inflammation. Their levels are finely tuned by the membrane-associated ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family. Although previous studies have addressed the role of NTPDase1 (CD39), the role of the other extracellular NTPDases, NTPDase2, -3, and -8, in sepsis is unclear. In the present studies we identified NTPDase8 as a top downregulated gene in the liver of mice submitted to cecal ligation-induced sepsis. Immunohistochemical analysis confirmed the decrease of NTPDase8 expression at the protein level. In vitro mechanistic studies using HepG2 hepatoma cells demonstrated that IL-6 but not TNF, IL-1ß, bacteria, or lipopolysaccharide are able to suppress NTPDase8 gene expression. NTPDase8, as well as NTPDase2 and NTPDase3 mRNA was downregulated, whereas NTPDase1 (CD39) mRNA was upregulated in polymorphonuclear leukocytes from both inflamed and septic patients compared to healthy controls. Although the host's inflammatory response of polymicrobial septic NTPDase8 deficient mice was no different from that of wild-type mice, IL-6 levels in NTPDase8 deficient mice were higher than IL-6 levels in wild-type mice with pneumonia. Altogether, the present data indicate that extracellular NTPDases are differentially regulated during sepsis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Inflamación/metabolismo , Leucocitos/metabolismo , Sepsis/metabolismo , Adenosina Trifosfatasas/genética , Animales , Femenino , Humanos , Inflamación/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Sepsis/genética
2.
Hippocampus ; 21(10): 1082-92, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20824731

RESUMEN

Increasing evidence indicates that physical exercise induces adaptations at the cellular, molecular, and systemic levels that positively affect the brain. Insulin plays important functional roles within the brain that are mediated by insulin-receptor (IR) signaling. In the hippocampus, insulin improves synaptic plasticity, memory formation, and learning via direct modulation of GABAergic and glutamatergic receptors. Separately, physical exercise and central insulin administration exert relevant roles in cognitive function. We here use CF1 mice to investigate (i) the effects of voluntary exercise on hippocampal insulin signaling and memory performance and (ii) whether central insulin administration alters the effects of exercise on hippocampal insulin signaling and memory performance. Adult mice performed 30 days of voluntary exercise on running wheel and afterward both, sedentary and exercised groups, received intracerebroventricular (icv) injection of saline or insulin (0.5-5 mU). Memory performance was assessed using the inhibitory avoidance and water maze tasks. Hippocampal tissue was measured for [U-(14)C] glucose oxidation and the immunocontent of insulin receptor/signaling (IR, pTyr, pAktser473). Additionally, the phosphorylation of the glutamate NMDA receptor NR2B subunit and the capacity of glutamate uptake were measured, and immunohistochemistry was used to determine glial reactivity. Exercise significantly increased insulin peripheral sensitivity, spatial learning, and hippocampal IR/pTyrIR/pAktser473 immunocontent. Glucose oxidation, glutamate uptake, and astrocyte number also increased relative to the sedentary group. In both memory tasks, 5 mU icv insulin produced amnesia but only in exercised animals. This amnesia was associated a rapid (15 min) and persistent (24 h) increase in hippocampal pNR2B immunocontent that paralleled the increase in glial reactivity. In conclusion, physical exercise thus increased hippocampal insulin signaling and improved water maze performance. Overstimulation of insulin signaling in exercised animals, however, via icv administration impaired behavioral performance. This effect was likely the result of aberrant phosphorylation of the NR2B subunit.


Asunto(s)
Hipocampo , Insulina/administración & dosificación , Condicionamiento Físico Animal/fisiología , Receptor de Insulina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Amnesia/fisiopatología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Cognición/fisiología , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inmunohistoquímica , Inyecciones Intraventriculares , Resistencia a la Insulina/fisiología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Neuroglía/metabolismo , Fosforilación , Transducción de Señal/fisiología
3.
Res Integr Peer Rev ; 5(1): 16, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33292815

RESUMEN

BACKGROUND: Preprint usage is growing rapidly in the life sciences; however, questions remain on the relative quality of preprints when compared to published articles. An objective dimension of quality that is readily measurable is completeness of reporting, as transparency can improve the reader's ability to independently interpret data and reproduce findings. METHODS: In this observational study, we initially compared independent samples of articles published in bioRxiv and in PubMed-indexed journals in 2016 using a quality of reporting questionnaire. After that, we performed paired comparisons between preprints from bioRxiv to their own peer-reviewed versions in journals. RESULTS: Peer-reviewed articles had, on average, higher quality of reporting than preprints, although the difference was small, with absolute differences of 5.0% [95% CI 1.4, 8.6] and 4.7% [95% CI 2.4, 7.0] of reported items in the independent samples and paired sample comparison, respectively. There were larger differences favoring peer-reviewed articles in subjective ratings of how clearly titles and abstracts presented the main findings and how easy it was to locate relevant reporting information. Changes in reporting from preprints to peer-reviewed versions did not correlate with the impact factor of the publication venue or with the time lag from bioRxiv to journal publication. CONCLUSIONS: Our results suggest that, on average, publication in a peer-reviewed journal is associated with improvement in quality of reporting. They also show that quality of reporting in preprints in the life sciences is within a similar range as that of peer-reviewed articles, albeit slightly lower on average, supporting the idea that preprints should be considered valid scientific contributions.

4.
Mol Neurobiol ; 54(8): 5807-5814, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27660270

RESUMEN

Hyperpalatable diets (HP) impair brain metabolism, and regular physical exercise has an apparent opposite effect. Here, we combined a prior long-term exposure to HP diet followed by physical exercise and evaluated the impact on some neuroenergetic components and on cognitive performance. We assessed the extracellular lactate concentration, expression of monocarboxylate transporters (MCTs), pyruvate dehydrogenase (PDH), and mitochondrial function in the hippocampus. Male C57BL/6J mice were fed 4 months with HP or a control diet. Subsequently, they were divided in the following groups: control diet sedentary (CDS), control diet exercise (CDE), HP diet sedentary (HPS), and HP diet exercise (HPE) (n = 15 per group) and were engaged for an additional 30-day period of voluntary exercise and HP diet. Relative to the control situation, exercise increased MCT1, MCT4, and PDH protein levels, while the HP diet increased MCT1 and MCT4 protein levels. The production of hydrogen peroxide (H2O2) and the mitochondrial membrane potential (∆Ñ°m) stimulated by succinate in hippocampal homogenates were not significantly different between groups. ADP phosphorylation and the maximal respiratory rate induced by FCCP showed similar responses between groups, implying a normal mitochondrial function. Also, extracellular brain lactate levels were increased in the HPE group compared to other groups soon after performing the Y-maze task. However, such enhanced lactate levels were not associated with improved memory performance. In summary, hippocampal protein expression levels of MCT1 and 4 were increased by physical exercise and HP diet, whereas PDH was only increased by exercise. These observations indicate that a hippocampal metabolic reprogramming takes place in response to these environmental factors.


Asunto(s)
Dieta , Peróxido de Hidrógeno/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neuroglía/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Masculino , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Simportadores/metabolismo
5.
Mol Neurobiol ; 53(9): 5807-5817, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26497034

RESUMEN

Aging is a major risk factor for cognitive deficits and neurodegenerative disorders, and impaired brain insulin receptor (IR) signaling is mechanistically linked to these abnormalities. The main goal of this study was to investigate whether brain insulin infusions improve spatial memory in aged and young rats. Aged (24 months) and young (4 months) male Wistar rats were intracerebroventricularly injected with insulin (20 mU) or vehicle for five consecutive days. The animals were then assessed for spatial memory using a Morris water maze. Insulin increased memory performance in young rats, but not in aged rats. Thus, we searched for cellular and molecular mechanisms that might account for this distinct memory response. In contrast with our expectation, insulin treatment increased the proliferative activity in aged rats, but not in young rats, implying that neurogenesis-related effects do not explain the lack of insulin effects on memory in aged rats. Furthermore, the expression levels of the IR and downstream signaling proteins such as GSK3-ß, mTOR, and presynaptic protein synaptophysin were increased in aged rats in response to insulin. Interestingly, insulin treatment increased the expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptors in the hippocampus of young rats, but not of aged rats. Our data therefore indicate that aged rats can have normal IR downstream protein expression but failed to mount a BDNF response after challenge in a spatial memory test. In contrast, young rats showed insulin-mediated TrkB/BDNF response, which paralleled with improved memory performance.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Cognición/efectos de los fármacos , Insulina/administración & dosificación , Insulina/farmacología , Factores de Crecimiento Nervioso/metabolismo , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proliferación Celular/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Inyecciones Intraventriculares , Masculino , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Ratas Wistar , Receptor trkB/metabolismo , Transducción de Señal/efectos de los fármacos , Memoria Espacial/efectos de los fármacos
6.
J Alzheimers Dis ; 30(4): 889-98, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22475793

RESUMEN

Insulin brain resistant state is associated with cognitive deficits and Alzheimer's disease by mechanisms that may involve mitochondrial damage and oxidative stress. Conversely, physical exercise improves cognitive function and brain insulin signaling. The intracerebroventricular (i.c.v.) administration of streptozotocin (STZ) in rodents is an established model of insulin-resistant brain state. This study evaluates the effects of physical exercise on memory performance of i.c.v., STZ-treated mice(1 and 3 mg/kg) and whether insulin (50 and 100 ng/ml) modulates mitochondrial H2O2 generation in synaptosomes. S100B levels and SOD and CAT activities were assessed as markers of brain damage caused by STZ. Sedentary and exercise vehicle-treated mice demonstrated similar performance in object recognition memory task. In the water maze test, exercise vehicle-treated mice showed improvement performance in the acquisition and retrieval phases. The administration of STZ (1 mg/kg) before thirty days of voluntary physical exercise protocol impaired recognition and spatial memory only in exercised mice, whereas STZ (3 mg/kg) impaired the performance of sedentary and exercise groups. Moreover, STZ (3 mg/kg) increased hippocampal S100B levels in both groups and SOD/CAT ratio in the sedentary animals. Insulin decreased synaptosomal H2O2 production in exercised compared to sedentary mice; however, both STZ doses abolished this effect. Normal brain insulin signaling is mechanistically involved in the improvement of cognitive function induced by exercise through the regulation of mitochondrial H2O2 production. However, a prior blockade of brain insulin signaling with STZ abolished the benefits of exercise on memory performance and mitochondrial H2O2 regulation.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Insulina/fisiología , Trastornos de la Memoria/metabolismo , Condicionamiento Físico Animal/fisiología , Estreptozocina/toxicidad , Sinaptosomas/metabolismo , Animales , Células Cultivadas , Peróxido de Hidrógeno/antagonistas & inhibidores , Inyecciones Intraventriculares , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/inducido químicamente , Ratones , Actividad Motora/fisiología , Condicionamiento Físico Animal/efectos adversos , Estreptozocina/administración & dosificación , Sinaptosomas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA