Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Ecol Lett ; 20(1): 98-111, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27889953

RESUMEN

Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer 'growing seasons'. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass.


Asunto(s)
Ecosistema , Cubierta de Hielo , Lagos , Plancton/fisiología , Estaciones del Año
2.
Sci Total Environ ; 621: 352-359, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29190558

RESUMEN

We aimed at quantifying the importance of limnological variables in the decadal rise of cyanobacteria biomass in shallow hemiboreal lakes. We constructed estimates of cyanobacteria (blue-green algae) biomass in a large, eutrophic lake (Estonia, Northeastern Europe) from a database comprising 28 limnological variables and spanning more than 50years of monitoring. Using a dual-model approach consisting in a boosted regression trees (BRT) followed by a generalized least squares (GLS) model, our results revealed that six variables were most influential for assessing the variance of cyanobacteria biomass. Cyanobacteria response to nitrate concentration and rotifer abundance was negative, whereas it was positive to pH, temperature, cladoceran and copepod biomass. Response to total phosphorus (TP) and total phosphorus to total nitrogen ratio was very weak, which suggests that actual in-lake TP concentration is still above limiting values. The most efficient GLS model, which explained nearly two thirds (r2=0.65) of the variance of cyanobacteria biomass included nitrate concentration, water temperature and pH. The very high number of observations (maximum n=525) supports the robustness of the models. Our results suggest that the decadal rise of blue-green algae in shallow lakes lies in the interaction between cultural eutrophication and global warming which bring in-lake physical and chemical conditions closer to cyanobacteria optima.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Eutrofización , Lagos/microbiología , Animales , Biomasa , Cladóceros , Copépodos , Estonia , Fósforo/análisis , Rotíferos
3.
PLoS One ; 13(12): e0209568, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30589880

RESUMEN

Climate change in recent decades has been identified as a significant threat to natural environments and human wellbeing. This is because some of the contemporary changes to climate are abrupt and result in persistent changes in the state of natural systems; so called regime shifts (RS). This study aimed to detect and analyse the timing and strength of RS in Estonian climate at the half-century scale (1966-2013). We demonstrate that the extensive winter warming of the Northern Hemisphere in the late 1980s was represented in atmospheric, terrestrial, freshwater and marine systems to an extent not observed before or after the event within the studied time series. In 1989, abiotic variables displayed statistically significant regime shifts in atmospheric, river and marine systems, but not in lake and bog systems. This was followed by regime shifts in the biotic time series of bogs and marine ecosystems in 1990. However, many biotic time series lacked regime shifts, or the shifts were uncoupled from large-scale atmospheric circulation. We suggest that the latter is possibly due to complex and temporally variable interactions between abiotic and biotic elements with ecosystem properties buffering biotic responses to climate change signals, as well as being affected by concurrent anthropogenic impacts on natural environments.


Asunto(s)
Atmósfera , Cambio Climático , Ambiente , Cambio Climático/historia , Ecosistema , Estonia , Geografía , Historia del Siglo XX , Historia del Siglo XXI , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA