Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 13(6): 6605-6617, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31188564

RESUMEN

Stem cell therapy in heart disease is challenged by mis-injection, poor survival, and low cell retention. Here, we describe a biocompatible multifunctional silica-iron oxide nanoparticle to help solve these issues. The nanoparticles were made via an in situ growth of Fe3O4 nanoparticles on both the external surfaces and pore walls of mesocellular foam silica nanoparticles. In contrast to previous work, this approach builds a magnetic moiety inside the pores of a porous silica structure. These materials serve three roles: drug delivery, magnetic manipulation, and imaging. The addition of Fe3O4 to the silica nanoparticles increased their colloidal stability, T2-based magnetic resonance imaging contrast, and superparamagnetism. We then used the hybrid materials as a sustained release vehicle of insulin-like growth factor-a pro-survival agent that can increase cell viability. In vivo rodent studies show that labeling stem cells with this nanoparticle increased the efficacy of stem cell therapy in a ligation/reperfusion model. The nanoparticle-labeled cells increase the mean left ventricular ejection fraction by 11 and 21% and the global longitudinal strain by 24 and 34% on days 30 and 60, respectively. In summary, this multifunctional nanomedicine improves stem cell survival via the sustained release of pro-survival agents.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Trasplante de Células Madre Mesenquimatosas/métodos , Nanopartículas/química , Nanomedicina Teranóstica/métodos , Animales , Células Cultivadas , Medios de Contraste/química , Liberación de Fármacos , Compuestos Férricos/química , Humanos , Factor I del Crecimiento Similar a la Insulina/farmacología , Imagen por Resonancia Magnética/métodos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/terapia , Dióxido de Silicio/química
2.
J Colloid Interface Sci ; 521: 261-279, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29510868

RESUMEN

The idea of multifunctional nanomedicine that enters the human body to diagnose and treat disease without major surgery is a long-standing dream of nanomaterials scientists. Nanomaterials show incredible properties that are not found in bulk materials, but achieving multi-functionality on a single material remains challenging. Integrating several types of materials at the nano-scale is critical to the success of multifunctional nanomedicine device. Here, we describe the advantages of silica nanoparticles as a tool for multifunctional nano-devices. Silica nanoparticles have been intensively studied in drug delivery due to their biocompatibility, degradability, tunable morphology, and ease of modification. Moreover, silica nanoparticles can be integrated with other materials to obtain more features and achieve theranostic capabilities and multimodality for imaging applications. In this review, we will first compare the properties of silica nanoparticles with other well-known nanomaterials for bio-applications and describe typical routes to synthesize and integrate silica nanoparticles. We will then highlight theranostic and multimodal imaging application that use silica-based nanoparticles with a particular interest in real-time monitoring of therapeutic molecules. Finally, we will present the challenges and perspective on future work with silica-based nanoparticles in medicine.


Asunto(s)
Nanopartículas/química , Dióxido de Silicio/química , Animales , Medios de Contraste/química , Portadores de Fármacos/química , Portadores de Fármacos/uso terapéutico , Monitoreo de Drogas/métodos , Humanos , Imagen Multimodal/métodos , Nanopartículas/uso terapéutico , Tamaño de la Partícula , Porosidad , Dióxido de Silicio/uso terapéutico , Propiedades de Superficie , Nanomedicina Teranóstica/métodos
3.
Biomaterials ; 179: 60-70, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29980075

RESUMEN

Silicon carbide has been shown to be biocompatible and is used as a coating material for implanted medical devices to prevent biofilms. Silicon carbide nanomaterials are also promising in cell tracking due to their stable and strong luminescence, but more comprehensive studies of this material on the nanoscale are needed. Here, we studied the toxicity of silicon carbide nanomaterials on human mesenchymal stem cells in terms of metabolism, viability, adhesion, proliferation, migration, oxidative stress, and differentiation ability. We compared two different shapes and found that silicon carbide nanowires are toxic to human mesenchymal stem cells but not to cancer cell lines at the concentration of 0.1 mg/mL. Control silicon carbide nanoparticles were biocompatible to human mesenchymal stem cells at 0.1 mg/mL. We studied the potential mechanistic effect of silicon carbide nanowires on human mesenchymal stem cells' phenotype, cytokine secretion, and gene expression. These findings suggest that the toxic effect of silicon carbide nanomaterials to human mesenchymal stem cells are dependent on morphology.


Asunto(s)
Compuestos Inorgánicos de Carbono/química , Nanoestructuras/química , Nanocables/química , Compuestos de Silicona/química , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Citocinas/química , Humanos , Células Madre Mesenquimatosas/citología , Estrés Oxidativo/fisiología
4.
ACS Appl Mater Interfaces ; 9(18): 15566-15576, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28422482

RESUMEN

Nanomaterials are promising tools in water remediation because of their large surface area and unique properties compared to bulky materials. We synthesized an organosilica nanoparticle (OSNP) and tuned its composition for anionic dye removal. The adsorption mechanisms are electrostatic attraction and hydrogen bonding between the amine on OSNP and the dye, and the surface charge of the OSNP can be tuned to adsorb either anionic or cationic dyes. Using phenol red as a model dye, we studied the effect of the amine group, pH, ionic strength, time, dye concentration, and nanomaterial mass on the adsorption. The theoretical maximum adsorption capacity was calculated to be 175.44 mg/g (0.47 mmol/g), which is higher than 67 out of 77 reported adsorbents. The experimental maximum adsorption capacity is around 201 mg/g (0.53 mmol/g). Furthermore, the nanoparticles are highly reusable and show stable dye removal and recovery efficiency over at least 10 cycles. In summary, the novel adsorbent system derived from the intrinsic amine group within the frame of OSNP are reusable and tunable for anionic or cationic dyes with high adsorption capacity and fast adsorption. These materials may also have utility in drug delivery or as a carrier for imaging agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA