Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Chem Inf Model ; 63(14): 4405-4422, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37410883

RESUMEN

Side-chain rotamer prediction is one of the most critical late stages in protein 3D structure building. Highly advanced and specialized algorithms (e.g., FASPR, RASP, SCWRL4, and SCWRL4v) optimize this process by use of rotamer libraries, combinatorial searches, and scoring functions. We seek to identify the sources of key rotamer errors as a basis for correcting and improving the accuracy of protein modeling going forward. In order to evaluate the aforementioned programs, we process 2496 high-quality single-chained all-atom filtered 30% homology protein 3D structures and use discretized rotamer analysis to compare original with calculated structures. Among 513,024 filtered residue records, increased amino acid residue-dependent rotamer errors─associated in particular with polar and charged amino acid residues (ARG, LYS, and GLN)─clearly correlate with increased amino acid residue solvent accessibility and an increased residue tendency toward the adoption of non-canonical off rotamers which modeling programs struggle to predict accurately. Understanding the impact of solvent accessibility now appears key to improved side-chain prediction accuracies.


Asunto(s)
Aminoácidos , Proteínas , Solventes , Proteínas/química , Aminoácidos/química , Algoritmos , Conformación Proteica
2.
PLoS Comput Biol ; 16(4): e1007449, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32240155

RESUMEN

The purpose of this quick guide is to help new modelers who have little or no background in comparative modeling yet are keen to produce high-resolution protein 3D structures for their study by following systematic good modeling practices, using affordable personal computers or online computational resources. Through the available experimental 3D-structure repositories, the modeler should be able to access and use the atomic coordinates for building homology models. We also aim to provide the modeler with a rationale behind making a simple list of atomic coordinates suitable for computational analysis abiding to principles of physics (e.g., molecular mechanics). Keeping that objective in mind, these quick tips cover the process of homology modeling and some postmodeling computations such as molecular docking and molecular dynamics (MD). A brief section was left for modeling nonprotein molecules, and a short case study of homology modeling is discussed.


Asunto(s)
Biología Computacional/métodos , Imagenología Tridimensional/métodos , Algoritmos , Aminoácidos/química , Simulación por Computador , Bases de Datos de Proteínas , Concentración de Iones de Hidrógeno , Internet , Iones , Ligandos , Aprendizaje Automático , Modelos Biológicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Proteínas/química , Programas Informáticos , Solventes , Homología Estructural de Proteína , Agua
3.
Drug Resist Updat ; 52: 100691, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32615524

RESUMEN

Metallothioneins (MTs) are small cysteine-rich intracellular proteins with four major isoforms identified in mammals, designated MT-1 through MT-4. The best known biological functions of MTs are their ability to bind and sequester metal ions as well as their active role in redox homeostasis. Despite these protective roles, numerous studies have demonstrated that changes in MT expression could be associated with the process of carcinogenesis and participation in cell differentiation, proliferation, migration, and angiogenesis. Hence, MTs have the role of double agents, i.e., working with and against cancer. In view of their rich biochemical properties, it is not surprising that MTs participate in the emergence of chemoresistance in tumor cells. Many studies have demonstrated that MT overexpression is involved in the acquisition of resistance to anticancer drugs including cisplatin, anthracyclines, tyrosine kinase inhibitors and mitomycin. The evidence is gradually increasing for a cellular switch in MT functions, showing that they indeed have two faces: protector and saboteur. Initially, MTs display anti-oncogenic and protective roles; however, once the oncogenic process was launched, MTs are utilized by cancer cells for progression, survival, and contribution to chemoresistance. The duality of MTs can serve as a potential prognostic/diagnostic biomarker and can therefore pave the way towards the development of new cancer treatment strategies. Herein, we review and discuss MTs as tumor disease markers and describe their role in chemoresistance to distinct anticancer drugs.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Resistencia a Antineoplásicos/genética , Metalotioneína/genética , Neoplasias/genética , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Iones/metabolismo , Metalotioneína/metabolismo , Metales/metabolismo , Estadificación de Neoplasias , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Pronóstico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Biomacromolecules ; 21(2): 418-434, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31738540

RESUMEN

Minimization of drug side effects is a hallmark of advanced targeted therapy. Herein we describe the synthesis of polysaccharide-based nanocapsules prepared from furcellaran and chitosan via layer-by-layer deposition using electrostatic interaction. Using doxorubicin as a model drug, prepared nanocapsules showed excellent drug loading properties and release influence by pH and stability. Targeted delivery of doxorubicin was achieved by nanocapsule surface modification using homing peptide (seq SMSIARLC). The synthesized nanocapsules possess excellent compatibility to eukaryotic organisms. In the case of nonmalignant cells (PNT1A and HEK-293), toxicity tests revealed the absences of DNA fragmentation, apoptosis, necrosis, and also disruption of erythrocyte membranes. In contrast, results from treatment of malignant cell lines (MDA-MB-231 and PC3) indicate good anticancer effects of synthesized bionanomaterial. Internalization studies revealed the nanocapsule's ability to enter the malignant cell lines by endocytosis and triggering the apoptosis. The occurrence of apoptosis is mostly connected to the presence of ROS and inability of DNA damage reparation. Additionally, the obtained results strongly indicate that peptide modification increases the speed of nanocapsule internalization into malignant cell lines while simultaneously nonmalignant cell lines are untouched by nanocapsules highlighting the strong selectivity of the peptide.


Asunto(s)
Preparaciones de Acción Retardada , Doxorrubicina/farmacocinética , Nanocápsulas/química , Alginatos/química , Línea Celular Tumoral , Quitosano/química , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Femenino , Células HEK293 , Hemólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Persona de Mediana Edad , Nanocápsulas/administración & dosificación , Nanocápsulas/toxicidad , Péptidos/química , Péptidos/metabolismo , Gomas de Plantas/química , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Polielectrolitos/química , Pruebas de Toxicidad
5.
J Nanobiotechnology ; 18(1): 95, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660596

RESUMEN

BACKGROUND: Currently, the diagnosis and treatment of neuroblastomas-the most frequent solid tumors in children-exploit the norepinephrine transporter (hNET) via radiolabeled norepinephrine analogs. We aim to develop a nanomedicine-based strategy towards precision therapy by targeting hNET cell-surface protein with hNET-derived homing peptides. RESULTS: The peptides (seq. GASNGINAYL and SLWERLAYGI) were shown to bind high-resolution homology models of hNET in silico. In particular, one unique binding site has marked the sequence and structural similarities of both peptides, while most of the contribution to the interaction was attributed to the electrostatic energy of Asn and Arg (< - 228 kJ/mol). The peptides were comprehensively characterized by computational and spectroscopic methods showing ~ 21% ß-sheets/aggregation for GASNGINAYL and ~ 27% α-helix for SLWERLAYGI. After decorating 12-nm ferritin-based nanovehicles with cysteinated peptides, both peptides exhibited high potential for use in actively targeted neuroblastoma nanotherapy with exceptional in vitro biocompatibility and stability, showing minor yet distinct influences of the peptides on the global expression profiles. Upon binding to hNET with fast binding kinetics, GASNGINAYLC peptides enabled rapid endocytosis of ferritins into neuroblastoma cells, leading to apoptosis due to increased selective cytotoxicity of transported payload ellipticine. Peptide-coated nanovehicles significantly showed higher levels of early apoptosis after 6 h than non-coated nanovehicles (11% and 7.3%, respectively). Furthermore, targeting with the GASNGINAYLC peptide led to significantly higher degree of late apoptosis compared to the SLWERLAYGIC peptide (9.3% and 4.4%, respectively). These findings were supported by increased formation of reactive oxygen species, down-regulation of survivin and Bcl-2 and up-regulated p53. CONCLUSION: This novel homing nanovehicle employing GASNGINAYLC peptide was shown to induce rapid endocytosis of ellipticine-loaded ferritins into neuroblastoma cells in selective fashion and with successful payload. Future homing peptide development via lead optimization and functional analysis can pave the way towards efficient peptide-based active delivery of nanomedicines to neuroblastoma cells.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Endocitosis/genética , Nanoestructuras/química , Neuroblastoma/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ferritinas/química , Humanos , Nanomedicina , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/química , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo
6.
Biophys J ; 116(11): 2062-2072, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31084902

RESUMEN

Given by χ torsional angles, rotamers describe the side-chain conformations of amino acid residues in a protein based on the rotational isomers (hence the word rotamer). Constructed rotamer libraries, based on either protein crystal structures or dynamics studies, are the tools for classifying rotamers (torsional angles) in a way that reflect their frequency in nature. Rotamer libraries are routinely used in structure modeling and evaluation. In this perspective article, we would like to encourage researchers to apply rotamer analyses beyond their traditional use. Molecular dynamics (MD) of proteins highlight the in silico behavior of molecules in solution and thus can identify favorable side-chain conformations. In this article, we used simple computational tools to study rotamer dynamics (RD) in MD simulations. First, we isolated each frame in the MD trajectories in separate Protein Data Bank files via the cpptraj module in AMBER. Then, we extracted torsional angles via the Bio3D module in R language. The classification of torsional angles was also done in R according to the penultimate rotamer library. RD analysis is useful for various applications such as protein folding, study of rotamer-rotamer relationship in protein-protein interaction, real-time correlation between secondary structures and rotamers, study of flexibility of side chains in binding site for molecular docking preparations, use of RD as guide in functional analysis and study of structural changes caused by mutations, providing parameters for improving coarse-grained MD accuracy and speed, and many others. Major challenges facing RD to emerge as a new scientific field involve the validation of results via easy, inexpensive wet-lab methods. This realm is yet to be explored.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Rotación , Isomerismo , Conformación Proteica
7.
Bioconjug Chem ; 29(9): 2954-2969, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30086240

RESUMEN

Novicidin (NVC), is a membrane-penetrating peptide, which forms a stable complex with Zn-Schiff base with interesting antitumor selectivity. We studied NVC derivatives to determine functional roles of key amino acids in toxicity, helicity, and binding of the Zn-Schiff base complex. Trimmed derivatives highlighted the role of peptide length and helicity in toxicity and membrane penetration. The removal of Lys from position 1 and 2 strongly increases the ability to disrupt the membranes. The trimming of the N-terminal residues significantly increases the stability of peptide helicity enhancing penetrating properties. Gly residue derivatives undermined a role of peptide bending in membrane penetration and toxicity. After the substitution of the central Gly derivatives with Ile or Lys, the peptides retained toxicity. These results illustrate the minor role of central helix bending in NVC toxicity. Binding-site-peptide derivatives identified His residue as the sole Zn-Schiff base binding site and eliminated the role of other aromatic residues.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/administración & dosificación , Sistemas de Liberación de Medicamentos , Bases de Schiff/química , Zinc/administración & dosificación , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/toxicidad , Sitios de Unión , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Glicina/química , Humanos , Ligandos , Conformación Proteica , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectroscopía Infrarroja por Transformada de Fourier , Zinc/química
8.
Mol Pharm ; 14(1): 221-233, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27943679

RESUMEN

Herein we describe a novel alternative synthesis route of polyvinylpyrrolidone nanoparticles using salting-out method at a temperature close to polyvinylpyrrolidone decomposition. At elevated temperatures, the stability of polyvinylpyrrolidone decreases and the opening of pyrrolidone ring fractions occurs. This leads to cross-linking process, where separate units of polyvinylpyrrolidone interact among themselves and rearrange to form nanoparticles. The formation/stability of these nanoparticles was confirmed by transmission electron microscopy, X-ray photoelectron spectroscopy, mass spectrometry, infrared spectroscopy, and spectrophotometry. The obtained nanoparticles possess exceptional biocompatibility. No toxicity and genotoxicity was found in normal human prostate epithelium cells (PNT1A) together with their high hemocompatibility. The antimicrobial effects of polyvinylpyrrolidone nanoparticles were tested on bacterial strains isolated from the wounds of patients suffering from hard-to-heal infections. Molecular analysis (qPCR) confirmed that the treatment can induce the regulation of stress-related survival genes. Our results strongly suggest that the polyvinylpyrrolidone nanoparticles have great potential to be developed into a novel antibacterial compound.


Asunto(s)
Antibacterianos/química , Materiales Biocompatibles/química , Nanopartículas/química , Povidona/química , Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Línea Celular , Estabilidad de Medicamentos , Epitelio/efectos de los fármacos , Humanos , Masculino , Pruebas de Sensibilidad Microbiana/métodos , Microscopía Electrónica de Transmisión/métodos , Espectroscopía de Fotoelectrones/métodos , Próstata/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Difracción de Rayos X/métodos
10.
Int J Mol Sci ; 17(4)2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27104527

RESUMEN

Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 µm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.


Asunto(s)
ADN/aislamiento & purificación , Magnetismo/métodos , Biotecnología/métodos , ADN/química , Microscopía Electrónica de Rastreo , Nanopartículas/química , Nanopartículas/ultraestructura , Tamaño de la Partícula , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Biomater Sci ; 12(5): 1249-1262, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38247338

RESUMEN

Ferritins are globular proteins with an internal cavity that enables the encapsulation of a plethora of low-mass compounds. Unfortunately, the overall negative surface charge of ferritin's internal cavity hampers efficient loading of negatively charged molecules. Therefore, we produced a genetically engineered human H-chain ferritin containing a cationic RKRK domain, reversing the natural net charge of the cavity to positive, thus allowing for efficient encapsulation of negatively charged siRNA. Due to the reversed, positive charge mediated by RKRK domains, the recombinant ferritin produced in E. coli inherently carries a load of bacterial RNA inside its cavity, turning the protein into an effective sponge possessing high affinity for DNA/RNA-binding substances that can be loaded with markedly higher efficiency compared to the wildtype protein. Using doxorubicin as payload, we show that due to its loading through the RNA sponge, doxorubicin is released in a sustained manner, with a cytotoxicity profile similar to the free drug. In summary, this is the first report demonstrating a ferritin/nucleic acid hybrid delivery vehicle with a broad spectrum of properties exploitable in various fields of biomedical applications.


Asunto(s)
Apoferritinas , ARN , Humanos , Apoferritinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ferritinas/genética , Ferritinas/química , Doxorrubicina/farmacología , Doxorrubicina/química
12.
Biomark Res ; 12(1): 38, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594765

RESUMEN

BACKGROUND & AIMS: Metallothionein-3 (hMT3) is a structurally unique member of the metallothioneins family of low-mass cysteine-rich proteins. hMT3 has poorly characterized functions, and its importance for hepatocellular carcinoma (HCC) cells has not yet been elucidated. Therefore, we investigated the molecular mechanisms driven by hMT3 with a special emphasis on susceptibility to sorafenib. METHODS: Intrinsically sorafenib-resistant (BCLC-3) and sensitive (Huh7) cells with or without up-regulated hMT3 were examined using cDNA microarray and methods aimed at mitochondrial flux, oxidative status, cell death, and cell cycle. In addition, in ovo/ex ovo chick chorioallantoic membrane (CAM) assays were conducted to determine a role of hMT3 in resistance to sorafenib and associated cancer hallmarks, such as angiogenesis and metastastic spread. Molecular aspects of hMT3-mediated induction of sorafenib-resistant phenotype were delineated using mass-spectrometry-based proteomics. RESULTS: The phenotype of sensitive HCC cells can be remodeled into sorafenib-resistant one via up-regulation of hMT3. hMT3 has a profound effect on mitochondrial respiration, glycolysis, and redox homeostasis. Proteomic analyses revealed a number of hMT3-affected biological pathways, including exocytosis, glycolysis, apoptosis, angiogenesis, and cellular stress, which drive resistance to sorafenib. CONCLUSIONS: hMT3 acts as a multifunctional driver capable of inducing sorafenib-resistant phenotype of HCC cells. Our data suggest that hMT3 and related pathways could serve as possible druggable targets to improve therapeutic outcomes in patients with sorafenib-resistant HCC.

13.
Artículo en Inglés | MEDLINE | ID: mdl-36205103

RESUMEN

For decades, the antimicrobial applications of nanoparticles (NPs) have attracted the attention of scientists as a strategy for controlling the ever-increasing threat of multidrug-resistant microorganisms. The photo-induced antimicrobial properties of titanium dioxide (TiO2 ) NPs by ultraviolet (UV) light are well known. This review elaborates on the modern methods and antimicrobial mechanisms of TiO2 NPs and their modifications to better understand and utilize their potential in various biomedical applications. Additional compounds can be grafted onto TiO2 nanomaterial, leading to hybrid metallic or non-metallic materials. To improve the antimicrobial properties, many approaches involving TiO2 have been tested. The results of selected studies from the past few years covering the most recent trends in this field are discussed in this review. There is extensive evidence to show that TiO2 NPs can exhibit certain antimicrobial features with disputable roles of UV light. Hence, they are effective in treating bacterial infections, although the majority of these conclusions came from in vitro studies and in the presence of some additional nanomaterials. The methods of evaluation varied depending on the nature of the research while researchers incorporated different techniques, including determining the minimum inhibitory concentration, cell count, and using disk and well diffusion methods, with a noticeable indication that cell count was the most and dominant criterion used to evaluate the antimicrobial activity. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanopartículas , Nanoestructuras , Antiinfecciosos/farmacología , Titanio/farmacología
14.
PLoS One ; 17(6): e0270734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35749472

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0163983.].

15.
Urol Res ; 39(6): 497-501, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21499919

RESUMEN

This work was conducted to evaluate the safety and efficacy of emergency ureteroscopic lithotripsy in patients with ureteral stones. From May 2003 to December 2010, 244 patients (184 men and 60 women, mean age 45.6 ± 12.7 years (range 22-73 years) were treated with emergency ureteroscopic lithotripsy for ureteral calculi. All patients were divided into three groups according to the stone location in the ureter. Intracorporeal lithotripsy when necessary was performed with the Swiss lithoclast. The overall stone-free status was defined as the complete absence of stone fragments at 4 weeks, postoperatively. A double J stent was inserted in selected patients if there was significant ureteral wall trauma, edema at the stone impaction site, suspected or proved ureteral perforation, and if the stone migrated to the kidney. The overall success rate was 90.6%. The success rates were different according to the stone site. The success rate of groups A, B and C was 69.4, 94.8 and 96.6%, respectively. The overall rate of ureteral stent insertion at the end of the procedure was 177/244 (72.5%). The rate of stent insertion was 41/49 (83.7%), 32/46 (69.6%) and 104/149 (69.8%) in groups A, B and C, respectively. The overall complication, failure, and stricture rate was 32/244 (13.1%), 23/244 (9.4%) and 0.8%, respectively. With the recent advances in ureteroscopic technology, intracorporeal probes and stone extraction devices, emergency ureteroscopy is found to be a safe and effective procedure with immediate relief from ureteral colic and ureteral stone fragmentation.


Asunto(s)
Servicio de Urgencia en Hospital , Litotricia/métodos , Cólico Renal/etiología , Cólico Renal/terapia , Cálculos Ureterales/complicaciones , Ureteroscopía/métodos , Adulto , Anciano , Femenino , Humanos , Litotricia/efectos adversos , Litotricia/instrumentación , Masculino , Persona de Mediana Edad , Seguridad del Paciente , Estudios Retrospectivos , Stents , Resultado del Tratamiento , Ureteroscopía/efectos adversos , Ureteroscopía/instrumentación
16.
Drug Discov Today ; 26(2): 289-295, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33075469

RESUMEN

Most of the available crystal structures of epidermal growth factor receptor (EGFR) kinase domain, bound to drug inhibitors, originated from ligand-based drug design studies. Here, we used variations in 110 crystal structures to assemble eight distinct families highlighting the C-helix orientation in the N-lobe of the EGFR kinase domain. The families shared similar mutational profiles and similarity in the ligand R-groups (chemical composition, geometry, and charge) facing the C-helix, mutation sites, and DFG domain. For structure-based drug design, we recommend a systematic decision-making process for choice of template, guided by appropriate pairwise fitting and clustering before the molecular docking step. Alternatively, the binding site shape/volume can be used to filter and select the compound libraries.


Asunto(s)
Diseño de Fármacos/métodos , Inhibidores de Proteínas Quinasas/farmacología , Sitios de Unión , Toma de Decisiones , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Mutación
17.
Comput Struct Biotechnol J ; 19: 5443-5454, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34667537

RESUMEN

Cancer cells can escape the effects of chemotherapy through mutations and upregulation of a tyrosine kinase protein called the epidermal growth factor receptor (EGFR). In the past two decades, four generations of tyrosine kinase inhibitors targeting EGFR have been developed. Using comparative structure analysis of 116 EGFR-drug complex crystal structures, cluster analysis produces two clans of 73 and 43 structures, respectively. The first clan of 73 structures is larger and is comprised mostly of the C-helix-IN conformation while the second clan of 43 structures correlates with the C-helix-OUT conformation. A deep rotamer analysis identifies 43 residues (18%) of the total of 237 residues spanning the kinase structures under investigation with significant rotamer variations between the C-helix-IN and C-helix-OUT clans. The locations of these rotamer variations take on the appearance of side chain conformational relays extending out from points of EGFR mutation to different regions of the EGFR kinase. Accordingly, we propose that key EGFR mutations act singly or together to induce drug resistant conformational changes in EGFR that are communicated via these side chain conformational relays. Accordingly, these side chain conformational relays appear to play a significant role in the development of tumour resistance. This phenomenon also suggests a new paradigm in protein conformational change that is mediated by supportive relays of rotamers on the protein surface, rather than through conventional backbone movements.

18.
Int J Biol Macromol ; 170: 53-60, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33340626

RESUMEN

Herein, we report a new simple and easy-to-use approach for the characterization of protein oligomerization based on fluorescence resonance energy transfer (FRET) and capillary electrophoresis with LED-induced detection. The FRET pair consisted of quantum dots (QDs) used as an emission tunable donor (emission wavelength of 450 nm) and a cyanine dye (Cy3), providing optimal optical properties as an acceptor. Nonoxidative dimerization of mammalian metallothionein (MT) was investigated using the donor and acceptor covalently conjugated to MT. The main functions of MTs within an organism include the transport and storage of essential metal ions and detoxification of toxic ions. Upon storage under aerobic conditions, MTs form dimers (as well as higher oligomers), which may play an essential role as mediators in oxidoreduction signaling pathways. Due to metal bridging by Cd2+ ions between molecules of metallothionein, the QDs and Cy3 were close enough, enabling a FRET signal. The FRET efficiency was calculated to be in the range of 11-77%. The formation of MT dimers in the presence of Cd2+ ions was confirmed by MALDI-MS analyses. Finally, the process of oligomerization resulting in FRET was monitored by CE, and oligomerization of MT was confirmed.


Asunto(s)
Acetatos/farmacología , Cadmio/farmacología , Electroforesis Capilar , Transferencia Resonante de Energía de Fluorescencia/métodos , Metalotioneína/química , Puntos Cuánticos , Animales , Carbocianinas , Dimerización , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Modelos Moleculares , Conformación Proteica , Conejos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Electricidad Estática
19.
Sci Rep ; 11(1): 5496, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750814

RESUMEN

Metallothionein-3 has poorly characterized functions in neuroblastoma. Cisplatin-based chemotherapy is a major regimen to treat neuroblastoma, but its clinical efficacy is limited by chemoresistance. We investigated the impact of human metallothionein-3 (hMT3) up-regulation in neuroblastoma cells and the mechanisms underlying the cisplatin-resistance. We confirmed the cisplatin-metallothionein complex formation using mass spectrometry. Overexpression of hMT3 decreased the sensitivity of neuroblastoma UKF-NB-4 cells to cisplatin. We report, for the first time, cisplatin-sensitive human UKF-NB-4 cells remodelled into cisplatin-resistant cells via high and constitutive hMT3 expression in an in vivo model using chick chorioallantoic membrane assay. Comparative proteomic analysis demonstrated that several biological pathways related to apoptosis, transport, proteasome, and cellular stress were involved in cisplatin-resistance in hMT3 overexpressing UKF-NB-4 cells. Overall, our data confirmed that up-regulation of hMT3 positively correlated with increased cisplatin-chemoresistance in neuroblastoma, and a high level of hMT3 could be one of the causes of frequent tumour relapses.


Asunto(s)
Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Metalotioneína 3/biosíntesis , Proteínas de Neoplasias/biosíntesis , Animales , Línea Celular Tumoral , Embrión de Pollo , Resistencia a Antineoplásicos/genética , Humanos , Metalotioneína 3/genética , Proteínas de Neoplasias/genética
20.
Int Braz J Urol ; 36(6): 685-91; discussion 691-2, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21176275

RESUMEN

PURPOSE: Define a group of patients with newly diagnosed prostate cancer, whose risk of bone metastasis is low enough to omit a bone scan staging study. MATERIALS AND METHODS: From 2003 to 2009, the medical records of patients who were newly diagnosed with prostate cancer were retrospectively reviewed. The data collected included: age, digital rectal examination, serum prostate specific antigen (PSA), Gleason score, clinical T stage, and bone isotope scan. Patients were divided into two groups according to the results of bone isotope scan; positive group and negative group. A univariate and multivariate binary logistic regression was used to analyze the results. RESULTS: Of the 106 patients, 98 had a complete data collection and were entered into the study. The median age of the patients was 70.5 years and patients with a positive bone scan was 74 years, significantly higher than for patients with negative scans (69 years) (p=0.02). Bone metastasis was detected in 39 cases (39.7%). In all patients with clinical T1-2 stage, a Gleason score of <8 and PSA≤20 ng/mL, the bone isotope scans were negative. In univariate analysis, PSA (>20 ng/mL) and Gleason score (>7) were independently predictive of positive bone scan, while clinical stage was not. CONCLUSION: Staging bone scans can be omitted in patients with a PSA level of ≤20 ng/mL, and Gleason score<8. Our results suggest that by considering the Gleason score and PSA, a larger proportion of patients with prostate cancer could avoid a staging bone scan.


Asunto(s)
Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/secundario , Huesos/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico , Factores de Edad , Anciano , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Estadificación de Neoplasias , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/patología , Cintigrafía , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA